Journal of Heuristics

, Volume 25, Issue 4–5, pp 629–642 | Cite as

Clustering-driven evolutionary algorithms: an application of path relinking to the quadratic unconstrained binary optimization problem

  • Michele Samorani
  • Yang Wang
  • Yang WangEmail author
  • Zhipeng Lv
  • Fred Glover


A long-standing challenge in the metaheuristic literature is to devise a way to select parent solutions in evolutionary population-based algorithms to yield better offspring, and thus provide improved solutions to populate successive generations. We identify a way to achieve this goal that simultaneously improves the efficiency of the evolutionary process. Our strategy derives from a proposal associated with the scatter search and path relinking evolutionary algorithms that prescribes clustering the solutions and focusing on the two classes of solution combinations where the parents alternatively belong to the same cluster or to different clusters. We demonstrate the efficacy of our approach for selecting parents within this scheme by applying it to the important domain of quadratic unconstrained binary optimization (QUBO), which provides a model for solving a wide range of binary optimization problems. Within this setting, we focus on the path relinking algorithm, which together with tabu search has provided one of the most effective methods for QUBO problems. Computational tests disclose that our solution combination strategy improves the best results in the literature for hard QUBO instances.


Path relinking Machine learning Clustering Quadratic unconstrained binary optimization Tabu search 



This research has been supported by the National Natural Science Foundation of China (Grant No. 71501157) and the Fundamental Research Funds for the Central Universities (Grant No. 3102017zy059).


  1. Aiex, R.M., Binato, S., Resende, M.G.: Parallel GRASP with path-relinking for job shop scheduling. Parallel Comput. 29(4), 393–430 (2003)MathSciNetCrossRefGoogle Scholar
  2. Cox, T., Bell, G., Glover, F.: A new learning approach to process improvement in a telecommunications company. Total Qual. Manag. Benchmark. Prod. Oper. Manag. 4, 217–227 (1995)Google Scholar
  3. Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1), 156–166 (1977)CrossRefGoogle Scholar
  4. Glover, F.: Tabu search for nonlinear and parametric optimization (with links to genetic algorithms). Discrete Appl. Math. 49, 231–255 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Glover, F.: Tabu thresholding: improved search by nonmonotonic trajectories. ORSA J. Comput. 7(4), 426–442 (1995)CrossRefzbMATHGoogle Scholar
  6. Glover, F., Laguna, M., Marti, R.: Fundamentals of scatter search and path relinking. Control Cybern. 29(3), 653–684 (2000)MathSciNetzbMATHGoogle Scholar
  7. Glover, F., Laguna, M., Martí, R.: Scatter Search and Path Relinking: Advances and Applications, Handbook of Metaheuristics, pp. 1–35. Springer, New York (2003)zbMATHGoogle Scholar
  8. Glover, F., Hao, J.-K.: Efficient evaluation for solving 0–1 unconstrained quadratic optimization problems. Int. J. Metaheuristics 1(1), 3–10 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Glover, F., Lü, Z., Hao, J.-K.: Diversification-driven tabu search for unconstrained binary quadratic problems. 4OR Q. J. Oper. Res. 8(3), 239–253 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Glover, F., Cox, L., Patil, R., Kelly, J.P.: Integrated exact, hybrid and metaheuristic learning methods for confidentiality protection. Ann. Oper. Res. 183(1), 47–73 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Ho, S.C., Gendreau, M.: Path relinking for the vehicle routing problem. J. Heuristics 12(1–2), 55–72 (2006)CrossRefzbMATHGoogle Scholar
  12. Hvattum, L.M., Glover, F.: Finding local optima of high-dimensional functions using direct search. Eur. J. Oper. Res. 195, 31–45 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 7, 881–892 (2002)CrossRefzbMATHGoogle Scholar
  14. Kochenberger, G., Hao, J.-K., Glover, F., Lewis, M., Lu, Z., Wang, H., Wang, Y.: The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28(1), 58–81 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Lai, X., Hao, J.-K., Lü, Z., Glover, F.: A learning-based path relinking algorithm for the bandwidth coloring problem. Eng. Appl. Artif. Intell. 52, 81–91 (2016)CrossRefGoogle Scholar
  16. Lü, Z., Glover, F., Hao, J.-K.: A hybrid metaheuristic approach to solving the UBQP problem. Eur. J. Oper. Res. 207(3), 1254–1262 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Palubeckis, G.: Multistart tabu search strategies for the unconstrained binary quadratic optimization problem. Ann. Oper. Res. 131, 259–282 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Palubeckis, G.: Iterated tabu search for the unconstrained binary quadratic optimization problem. Informatica 17(2), 279–296 (2006)MathSciNetzbMATHGoogle Scholar
  19. Samorani, M., Laguna, M.: Data-mining-driven neighborhood search. INFORMS J. Comput. 24(2), 210–227 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Santos, L.F., Martins, S.L., Plastino, A.: Applications of the DMGRASP heuristic: a survey. Int. Trans. Oper. Res. 15(4), 387–416 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Sorensen, K., Sevaux, M., Glover, F.: A history of metaheuristics. In: Marti, R., Pardalos, P., Resende, M. (eds.) Handbook of Heuristics. Springer to appear (2018). arXiv:1704.00853 [cs.AI]
  22. Wang, Y., Lü, Z., Glover, F., Hao, J.-K.: Path relinking for unconstrained binary quadratic programming. Eur. J. Oper. Res. 223, 595–604 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. Wang, Y., Wu, Q., Glover, F.: Effective metaheuristic algorithms for the minimum differential dispersion problem. Eur. J. Oper. Res. 258(3), 829–843 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Wang, Y., Wu, Q., Punnen, A.P., Glover, F.: Adaptive tabu search with strategic oscillation for the bipartite boolean quadratic programming problem with partitioned variables. Inf. Sci. 450, 284–300 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Michele Samorani
    • 1
  • Yang Wang
    • 2
  • Yang Wang
    • 3
    Email author
  • Zhipeng Lv
    • 2
  • Fred Glover
    • 4
  1. 1.Leavey School of BusinessSanta Clara UniversitySanta ClaraUSA
  2. 2.School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  3. 3.School of ManagementNorthwestern Polytechnical UniversityXi’anChina
  4. 4.Leeds School of BusinessUniversity of ColoradoBoulderUSA

Personalised recommendations