Journal of Heuristics

, Volume 25, Issue 4–5, pp 673–701 | Cite as

A UAV location and routing problem with spatio-temporal synchronization constraints solved by ant colony optimization

  • Oktay Yılmaz
  • Ertan YakıcıEmail author
  • Mumtaz Karatas


In this study, we introduce an optimization problem which attempts to optimize location and routing of a homogeneous unmanned aerial vehicle fleet. The problem also allocates the available capacity to the potential locations while it sustains the feasibility defined by synchronization constraints which include time windows at visited points, capacity monitoring in the stations and a limited number of multiple sorties. A mixed integer linear programming formulation for the problem is given and a heuristic method based on ant colony optimization approach is suggested. The suggested heuristic is compared to a commercial solver, a greedy heuristic and a simpler version of the suggested heuristic. We have observed that the suggested heuristic provides the best solutions, while the commercial solver is able to produce only poor solutions in longer time periods. The learning component, which is the main difference between the suggested heuristic and its simplified version, makes a significant change. The results of the experiments strongly suggest the usage of our metaheuristic method for the introduced problem.


Location and routing Mixed integer linear programming Ant colony optimization Military 


  1. Ahn, J., De Weck, O., Hoffman, J.: An optimization framework for global planetary surface exploration campaigns. J. Br. Interplanet. Soc. 61(12), 487 (2008)Google Scholar
  2. Ahn, J., de Weck, O., Geng, Y., Klabjan, D.: Column generation based heuristics for a generalized location routing problem with profits arising in space exploration. Eur. J. Oper. Res. 223(1), 47–59 (2012)MathSciNetzbMATHGoogle Scholar
  3. Akca, Z., Berger, R.T., Ralphs, T.K.: A branch-and-price algorithm for combined location and routing problems under capacity restrictions. In: Chinneck, J.W., Kristjansson, B., Saltzman, M.J. (eds.) Operations Research and Cyber-Infrastructure. Operations Research/Computer Science Interfaces, vol. 47. Springer, Boston, MA (2009)Google Scholar
  4. Archetti, C., Hertz, A., Speranza, M.G.: Metaheuristics for the team orienteering problem. J. Heuristics 13(1), 49–76 (2007)Google Scholar
  5. Arkin, E.M., Mitchell, J.S., Narasimhan, G.: Resource-constrained geometric network optimization. In: Proceedings of the Fourteenth Annual Symposium on Computational Geometry, pp. 307–316. ACM (1998)Google Scholar
  6. Baldacci, R., Mingozzi, A., Wolfler Calvo, R.: An exact method for the capacitated location-routing problem. Oper. Res. 59(5), 1284–1296 (2011)MathSciNetzbMATHGoogle Scholar
  7. Barreto, S., Ferreira, C., Paixao, J., Santos, B.S.: Using clustering analysis in a capacitated location-routing problem. Eur. J. Oper. Res. 179(3), 968–977 (2007)zbMATHGoogle Scholar
  8. Belenguer, J.M., Benavent, E., Prins, C., Prodhon, C., Calvo, R.W.: A branch-and-cut method for the capacitated location-routing problem. Comput. Oper. Res. 38(6), 931–941 (2011)MathSciNetzbMATHGoogle Scholar
  9. Bemis, S.P., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., Thiele, S.T., Bangash, H.A.: Ground-based and UAV-based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J. Struct. Geol. 69, 163–178 (2014)Google Scholar
  10. Boudahri, F., Aggoune-Mtalaa, W., Bennekrouf, M., Sari, Z.: Application of a clustering based location-routing model to a real agri-food supply chain redesign. In: Nguyen, N., Trawiński, B., Katarzyniak, R., Jo G.S. (eds.) Advanced Methods for Computational Collective Intelligence. Studies in Computational Intelligence, pp. 323–331. Springer, Berlin (2013)Google Scholar
  11. Boussier, S., Feillet, D., Gendreau, M.: An exact algorithm for team orienteering problems. 4OR Q. J. Oper. Res. 5(3), 211–230 (2007)MathSciNetzbMATHGoogle Scholar
  12. Browne, R.: New Navy Contract Aims to Equip Hundreds of Ships with Drones (2016). Retrieved from
  13. Butt, S.E., Cavalier, T.M.: A heuristic for the multiple tour maximum collection problem. Comput. Oper. Res. 21(1), 101–111 (1994)zbMATHGoogle Scholar
  14. Butt, S.E., Ryan, D.M.: An optimal solution procedure for the multiple tour maximum collection problem using column generation. Comput. Oper. Res. 26(4), 427–441 (1999)MathSciNetzbMATHGoogle Scholar
  15. Byman, D.: Why drones work: the case for Washington’s weapon of choice. Foreign Aff. 92(4), 32–43 (2013)Google Scholar
  16. Chao, I., Golden, B., Wasil, E.: Theory and methodology—the team orienteering problem. Eur. J. Oper. Res. 88, 464–474 (1996)zbMATHGoogle Scholar
  17. Chircop, J., Buckingham, C.D.: A multiple pheromone ant clustering algorithm. In: Terrazas, G., Otero, F., Masegosa, A. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2013). Studies in Computational Intelligence, pp. 13–27. Springer, Cham (2014)Google Scholar
  18. Christof, N., Eilon, S.: Expected distances in distribution problems. Oper. Res. Q. 20(4), 437 (1969)Google Scholar
  19. Contardo, C., Cordeau, J.F., Gendron, B.: A Branch-and-Cut-and-Price Algorithm for the Capacitated Location-Routing Problem. Technical Report CIRRELT-2011-44, Université de Montréal, Canada (2011)Google Scholar
  20. Cura, T.: An artificial bee colony algorithm approach for the team orienteering problem with time windows. Comput. Ind. Eng. 74, 270–290 (2014)Google Scholar
  21. Dang, D.C., El-Hajj, R., Moukrim, A.: A branch-and-cut algorithm for solving the team orienteering problem. In: Gomes, C., Sellmann, M. (eds.) International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2013. Lecture Notes in Computer Science, vol. 7874. Springer, Heidelberg (2013)Google Scholar
  22. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, J.Y. (eds) Handbook of Metaheuristics, International Series in Operations Research & Management Science, vol. 146. Springer, Boston, MA (2010)Google Scholar
  23. Drexl, M., Schneider, M.: A survey of variants and extensions of the location-routing problem. Eur. J. Oper. Res. 241(2), 283–308 (2015)MathSciNetzbMATHGoogle Scholar
  24. Duhamel, C., Lacomme, P., Prins, C., Prodhon, C.: A GRASP x ELS approach for the capacitated location-routing problem. Comput. Oper. Res. 37(11), 1912–1923 (2010)zbMATHGoogle Scholar
  25. El-Hajj, R., Dang, D.C., Moukrim, A.: Solving the team orienteering problem with cutting planes. Comput. Oper. Res. 74, 21–30 (2016)MathSciNetzbMATHGoogle Scholar
  26. Ferreira, J., Quintas, A., Oliveira, J.A., Pereira, G.A.B., Dias, L.: Solving the team orienteering problem: developing a solution tool using a genetic algorithm approach. In: Snášel V., Krömer P., Köppen M., Schaefer G. (eds) Soft Computing in Industrial Applications. Advances in Intelligent Systems and Computing, vol. 223. Springer, Cham (2014)Google Scholar
  27. Fowler, M.: The future of unmanned aerial vehicles. Glob. Secur. Intell. Stud. 1(1), 3 (2015)Google Scholar
  28. Glade, D.: (2000) Unmanned Aerial Vehicles: Implications for Military Operations (Occasional Paper No. 16, Center for Strategy and Technology, Air War College, pp. 17–19). Air University, Maxwell Air Force Base, CA (2000)Google Scholar
  29. Glover, F.W., Kochenberger, G.A. (eds.): Handbook of Metaheuristics, vol. 57. Springer, Berlin (2006)zbMATHGoogle Scholar
  30. Goraj, Z.: Civilian unmanned aerial vehicles—overview of European effort and challenges for the future. Aviat. J. Vilnius 7(1), 3–15 (2003)Google Scholar
  31. Haddal, C.C., Gertler, J.: Homeland Security: Unmanned Aerial Vehicles and Border Surveillance. Library of Congress Washington DC Congressional Research Service (2010)Google Scholar
  32. Hu, Q., Lim, A.: An iterative three-component heuristic for the team orienteering problem with time windows. Eur. J. Oper. Res. 232(2), 276–286 (2014)zbMATHGoogle Scholar
  33. Johnston, P.B., Sarbahi, A.K.: The impact of US drone strikes on terrorism in Pakistan. Int. Stud. Q. 60(2), 203–219 (2016)Google Scholar
  34. Karoum, B., Elbenani, B.: Clonal selection algorithm for the team orienteering problem. In: Intelligent Systems: Theories and Applications (SITA), 2016 11th International Conference on, pp. 1–5. IEEE (2016)Google Scholar
  35. Kataoka, S., Morito, S.: An algorithm for single constraint maximum collection problem. J. Oper. Res. Soc. Jpn. 31(4), 515–530 (1988)MathSciNetzbMATHGoogle Scholar
  36. Katsigiannis, P., Misopolinos, L., Liakopoulos, V., Alexandridis, T.K., Zalidis, G.: An autonomous multi-sensor UAV system for reduced-input precision agriculture applications. In: Control and Automation (MED), 2016 24th Mediterranean Conference on, pp. 60–64. IEEE (2016)Google Scholar
  37. Ke, L., Zhai, L., Li, J., Chan, F.T.: Pareto mimic algorithm: an approach to the team orienteering problem. Omega 61, 155–166 (2016)Google Scholar
  38. Keshtkaran, M., Ziarati, K., Bettinelli, A., Vigo, D.: Enhanced exact solution methods for the team orienteering problem. Int. J. Prod. Res. 54(2), 591–601 (2016)Google Scholar
  39. Labadie, N., Melechovský, J., Calvo, R.W.: Hybridized evolutionary local search algorithm for the team orienteering problem with time windows. J. Heuristics 17(6), 729–753 (2011)zbMATHGoogle Scholar
  40. Labadie, N., Mansini, R., Melechovský, J., Calvo, R.W.: The team orienteering problem with time windows: an lp-based granular variable neighborhood search. Eur. J. Oper. Res. 220(1), 15–27 (2012)MathSciNetzbMATHGoogle Scholar
  41. Laliberte, A.S., Rango, A.: Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery. IEEE Trans. Geosci. Remote Sens. 47(3), 761–770 (2009)Google Scholar
  42. Laporte, G., Martello, S.: The selective travelling salesman problem. Discrete Appl. Math. 26(2–3), 193–207 (1990)MathSciNetzbMATHGoogle Scholar
  43. Laporte, G., Nobert, Y.: An exact algorithm for minimizing routing and operating costs in depot location. Eur. J. Oper. Res. 6(2), 224–226 (1981)zbMATHGoogle Scholar
  44. Lin, S.W., Vincent, F.Y.: A simulated annealing heuristic for the team orienteering problem with time windows. Eur. J. Oper. Res. 217(1), 94–107 (2012)MathSciNetzbMATHGoogle Scholar
  45. Lopes, R.B., Ferreira, C., Santos, B.S., Barreto, S.: A taxonomical analysis, current methods and objectives on location-routing problems. Int. Trans. Oper. Res. 20(6), 795–822 (2013)MathSciNetzbMATHGoogle Scholar
  46. Montemanni, R., Gambardella, L.M.: An ant colony system for team orienteering problems with time windows. Found. Comput. Decis. Sci. 34(4), 287 (2009)zbMATHGoogle Scholar
  47. Montemanni, R., Weyland, D., Gambardella, L.M.: An enhanced ant colony system for the team orienteering problem with time windows. In: Computer Science and Society (ISCCS), 2011 International Symposium on, pp. 381–384. IEEE (2011)Google Scholar
  48. Murphy, D., Cycon, J.: Applications for mini VTOL UAV for law enforcement. In: SPIE Proc. 3577: Sensors, C3I, Information, and Training Technologies for Law Enforcement, Boston, MA, 3–5 November 1998.
  49. Nagy, G., Salhi, S.: Location-routing: issues, models and methods. Eur. J. Oper. Res. 177(2), 649–672 (2007)MathSciNetzbMATHGoogle Scholar
  50. Ngenkaew, W., Ono, S., Nakayama, S.: The deposition of multiple pheromones in ant-based clustering. Int. J. Innov. Comput. Inf. Control 4(7), 1349–4198 (2008)Google Scholar
  51. Poggi, M., Viana, H., Uchoa, E.: The team orienteering problem: formulations and branch-cut and price. In: OASIcs-OpenAccess Series in Informatics, vol. 14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  52. Prins, C., Prodhon, C., Calvo, R.W.: Solving the capacitated location-routing problem by a GRASP complemented by a learning process and a path relinking. 4OR Q. J. Oper. Res. 4(3), 221–238 (2006)MathSciNetzbMATHGoogle Scholar
  53. Prodhon, C., Prins, C.: A survey of recent research on location-routing problems. Eur. J. Oper. Res. 238(1), 1–17 (2014)MathSciNetzbMATHGoogle Scholar
  54. Salhi, S., Rand, G.K.: The effect of ignoring routes when locating depots. Eur. J. Oper. Res. 39(2), 150–156 (1989)MathSciNetzbMATHGoogle Scholar
  55. Souffriau, W., Vansteenwegen, P., Berghe, G.V., Van Oudheusden, D.: A path relinking approach for the team orienteering problem. Comput. Oper. Res. 37(11), 1853–1859 (2010)MathSciNetzbMATHGoogle Scholar
  56. Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., Van Oudheusden, D.: The multiconstraint team orienteering problem with multiple time windows. Transp. Sci. 47(1), 53–63 (2013)zbMATHGoogle Scholar
  57. Stützle, T., Hoos, H.: MAX–MIN ant system and local search for the traveling salesman problem. In: IEEE International Conference on Evolutionary Computation (ICEC’97) (1997)Google Scholar
  58. Stützle, T., Hoos, H.H.: MAX–MIN ant system. Future Gener. Comput. Syst. 16(8), 889–914 (2000)zbMATHGoogle Scholar
  59. Tang, H., Miller-Hooks, E.: A tabu search heuristic for the team orienteering problem. Comput. Oper. Res. 32(6), 1379–1407 (2005)zbMATHGoogle Scholar
  60. Ting, C.J., Chen, C.H.: A multiple ant colony optimization algorithm for the capacitated location routing problem. Int. J. Prod. Econ. 141(1), 34–44 (2013)MathSciNetGoogle Scholar
  61. Tozer, T., Grace, D., Thompson, J., Baynham, P.: UAVs and HAPs-potential convergence for military communications. In: Military Satellite Communications (Ref. No. 2000/024), IEE Colloquium on, p. 10-1. IET (2000)Google Scholar
  62. Tricoire, F., Romauch, M., Doerner, K.F., Hartl, R.F.: Heuristics for the multi-period orienteering problem with multiple time windows. Comput. Oper. Res. 37(2), 351–367 (2010)MathSciNetzbMATHGoogle Scholar
  63. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: A detailed analysis of two metaheuristics for the team orienteering problem. In: Engineering Stochastic Local Search, Lecture Notes in Computer Science, vol. 5752, pp. 110–114 (2009a)Google Scholar
  64. Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: A guided local search metaheuristic for the team orienteering problem. Eur. J. Oper. Res. 196(1), 118–127 (2009b)zbMATHGoogle Scholar
  65. Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: Metaheuristics for tourist trip planning. In: Metaheuristics in the Service Industry, pp. 15–31. Springer, Berlin (2009c)Google Scholar
  66. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem: a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)MathSciNetzbMATHGoogle Scholar
  67. Waharte, S., Trigoni, N.: Supporting search and rescue operations with UAVs. In: Emerging Security Technologies (EST), 2010 International Conference on, pp. 142–147. IEEE (2010)Google Scholar
  68. Wong, K.C.: Unmanned Aerial Vehicles (UAVS). Department of Aeronautical Engineering, University of Sydney, Camperdown, Australia (2006)Google Scholar
  69. Yakıcı, E.: Solving location and routing problem for UAVs. Comput. Ind. Eng. 102, 294–301 (2016a)Google Scholar
  70. Yakıcı, E.: Generalization of a UAV location and routing problem by time windows. J. Nav. Sci. Eng. 12(2), 67–78 (2016b)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Barbaros Naval Sciences and Engineering InstituteNational Defense UniversityIstanbulTurkey
  2. 2.Turkish Naval AcademyNational Defense UniversityIstanbulTurkey
  3. 3.Bahcesehir UniversityIstanbulTurkey

Personalised recommendations