Advertisement

Journal of Heuristics

, Volume 25, Issue 1, pp 47–69 | Cite as

Combining simulated annealing with local search heuristic for MAX-SAT

  • Noureddine BouhmalaEmail author
Article
  • 59 Downloads

Abstract

The simplicity of the maximum satisfiability problem combined with its wide applicability in various areas of artificial intelligence and computing science made it one of the fundamental optimization problems. This NP-complete problem refers to the task of finding a variable assignment that satisfies the maximum number of clauses in a Boolean Formula. The present consensus is that the best heuristic that leads to the best solutions for the partitioning of generic (random) graphs is a variable depth search due to Kernighan and Lin algorithm hereafter referred to as KL. It suggests an intriguing idea which is based on replacing the search of one favorable move by a search for a favorable sequence of moves. In this paper, an adapted version of KL for the maximum satisfiability problem is introduced and embedded into the simulated annealing algorithm. Tests on benchmark instances and comparison with state-of-the-art solvers quantify the power of the method.

Keywords

Maximum satisfiability problem Kernighan–Lin Simulated annealing 

References

  1. Adenzo, B., Laguna, B.: Fine-tuning of algorithms using fractional experiment design and local search. Oper. Res. 54, 99–114 (2006)CrossRefGoogle Scholar
  2. Amparo, S., Angel, A.J., Renatas, K.: A Survey on finantial applications of metaheuristics. ACM Comput. Surv. (CSUR) 50(1), 5 (2017)Google Scholar
  3. Azimi, Z.N.: Comparison of meta-heuristic algorithms for examination timetabling problem. J. Appl. Math. Comput. 16(1–2), 337–354 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Tools and Algorithms for the Construction and Analysis of Systems, pp. 193–207 (1997)Google Scholar
  5. Biere, A., Heule, M., Maaren, H., Walsh, T.: Handbook of Satisfiability. In: Frontiers in Artificial Intelligence and Applications, vol. 185 (2009)Google Scholar
  6. Bouhmala, N.: A multilevel memetic algorithm for large SAT-encoded problems. Evol. Comput. 20(4), 641–664 (2012)CrossRefGoogle Scholar
  7. Bouhmala, N.: A Variable neighborhood walksat-based algorithm for MAX-SAT problems. Sci. World J. Article ID 798323, 11 (2014).  https://doi.org/10.1155/2014/798323.
  8. Bouhmala, N.: A Multilevel learning automata for MAX-SAT. Int. J. Mach. Learn. Cybern. 6, 911–921 (2015).  https://doi.org/10.1007/s13042-015-0355-4 CrossRefGoogle Scholar
  9. Bouhmala, N.: Enhanced metaheuristics with the multilevel paradigm for MAX-CSPs. In: Computational Sciences and Its Applications, vol. 9789, Lecture Notes in computer science, pp. 543–553 (2016)Google Scholar
  10. Bouhmala, N., Granmo, O.: Combining finite learning au- tomata with GSAT for the satisfiability problem. Eng. Appl. Artif. Intell. 23(5), 715–726 (2010)CrossRefGoogle Scholar
  11. Cai, S., Su, K.: Configuration checking with aspiration in local search for SAT. In: Proceedings of AAAI-12, pp. 434–440 (2012)Google Scholar
  12. Cha, B., Iwama, K.: Performance tests of local search algorithms using new types of random CNF formula. In: Proceedings of IJCAI95, pp. 304–309. Morgan Kaufmann Publishers, Montral, Qubec, Canada(1995)Google Scholar
  13. Cuevas, E., Orta, A.R.: A cuckoo search algorithm for multimodal optimization. Sci. World J. Article ID 497514, 2014, 20 (2014) http://dx.doi.org/10.1155/2014/497514
  14. Deeshpande, A., Triantaphyllou, E.: A greedy randomized adaptive search procedure (GRASP) for inferring logical clauses from examples in polynomial time and some extensions. Math. Comput. Model. 27(1), 75–99 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Frank, J.: Learning short-term clause weights for GSAT. In: Proceedings of IJCAI97, pp. 384–389. Morgan Kaufmann Publishers, Japan (1997)Google Scholar
  16. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Glover, F., Kochenberger, G.: Handbook of metaheuristics. Springer, Berlin (2003)zbMATHGoogle Scholar
  18. Gustavo, P.S., Alexandre, F.: A study of different metaheuristics to solve the urban transit crew scheduling problem. J. Transport Lit. 8(4), 227–251 (2014)CrossRefGoogle Scholar
  19. Hansen, P., Jaumard, B., Mladenovic, N., Parreira, A.D.: Variable neighborhood search for maximum weighted satisfiability problem. Technical Report G-2000-62, Les Cahiers du GERAD, Group for Research in Decision Analysis (2000)Google Scholar
  20. Hoos, H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of the AAAI-2002, pp. 655–660 (2002)Google Scholar
  21. Hoos, H.: On the run-time behavior of stochastic local search algorithms for SA. In: Proceedings of AAAI-99, Orlando, Florida, pp. 661–666 (1999)Google Scholar
  22. Hutter, F., Hoos, H., Leyton-Brown, K., Stútzle, T.: ParamILS: an automatic algorithm con guration framework. J. Artif. Intell. 36, 267–306 (2009)CrossRefzbMATHGoogle Scholar
  23. Ijaz, A., Rao, A., Shah, A., Alamzeb, E., Khan, J.: Performance of various metaheuristic techniques for economic dispatch problem with valve point loading effects and multiple fueling options. Adv. Electr. Eng. Article ID 765053, 2014, 14 (2014).  https://doi.org/10.1155/2014/765053
  24. Ivar, B., Zuzana, C.: Solving the travelling salesman problem using the ant colony optimization. Manag. Inf. Syst. 6, 010–014 (2011)Google Scholar
  25. Jhonson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation. Part I, graph partitioning. J. Oper. Res. 37(6), 865–892 (1989)CrossRefzbMATHGoogle Scholar
  26. Jin-Kao, H., Lardeux, F., Saubion, F.: Evolutionary computing for the satisfiability problem. In: Applications of Evolutionary Computing, University of Essex, England, vol. 2611 of LNCS, pp. 258–267 (2003)Google Scholar
  27. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. BSTJ 49(2), 291–307 (1970)zbMATHGoogle Scholar
  28. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  29. Laarhoven, V., Aarts, E.: Simulated anneling: theory and applications. D. Reidle, pulishing Company, Dordrecht (1988)Google Scholar
  30. le Berre, D., Parrain, A.: The Sat4jLibrary. J. Satisf. Boolean Model. Comput. 7, 59–64 (2010)Google Scholar
  31. Lessman, S., Caserta, M., Arango, I.M.: Tuning metaheuristics: a data mining based approach for particle swarm optimization. Expert Syst. Appl. 38(10), 12826–12838 (2011)CrossRefGoogle Scholar
  32. Li, C.M., Wei, W., Zhang, H.: Combining adaptive noise and look-ahead in local search for SAT. Lecture Notes in Computer Science 4501, 121–133 (2007)Google Scholar
  33. Li, Z., Janardhanan, M., Tang, Q., Nielsen, P.: Co-evolutionary particle swarm optimization algorithm for two-sided robotic assembly line balancing problem. Adv. Mech. Eng. 8(9), 1–14 (2016)Google Scholar
  34. Lian, T. A., Liave, M.R., Goodwin, M., Bouhmala, N.: Towards multilevel ant colony optimisation for the euclidean symmetric traveling salesman problem. In: Proceedings of the 28th international conference on current approaches in applied artificial intelligence, vol. 9101, pp. 222–231 (2015)Google Scholar
  35. Liang, Y., Leung, K.S.: Genetic algorithm with adaptive elitist-population strategies for multimodal function optimization. Appl. Soft Comput. J. 11(2), 2017–2034 (2011)CrossRefGoogle Scholar
  36. Lin, S., Kernighan, B.W.: An efficient heuristic fourth eTraveling salesman problem. OR 21, 498–516 (1973)CrossRefzbMATHGoogle Scholar
  37. Lozano, M., Blum, C.: A hybrid metaheuristic for the longest common subsequence problem. Lecture Notes in Computer Science, Vol. 6373, 1–15 (2010)CrossRefGoogle Scholar
  38. Luo, C., Cai, S., Wu, W., Jie, Z., Su, K.: CCLS: an efficient local search algorithm for weighted maximum satisfiability. IEEE Trans. Comput. 64(7), 1830–1843 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  39. Luo, C., Cai, S., Su, K., Huang, W.: CCEHC: An efficient local search algorithm for weighted partial maximum satisfiability. In: Proceedings of the twenty-sixth international joint conference on artificial intelligence, pp. 5030-5034 (2017)Google Scholar
  40. Mazure, B., Sa, L., Gregoire, E.: Tabu search for SAT. In: Proceedings of the Fourteenth is, e National Conference on Artificial Intelligence (AAAI-97), pp. 281–285 (1997)Google Scholar
  41. McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97), Rhode Island, pp. 321–326 (1997)Google Scholar
  42. Mendes, J., Greiner, D.: Evolutionary algorithms and metaheuristics in civil engineering and construction management. In: 11th World Congress on Computational Mechanics (WCCM2014) (2014)Google Scholar
  43. Pappalardo, E., Cantone, D., Pardalos, P.: A combined greedy-walk heuristic and simulated annealing approach for the closest string problem. J. Optim. Methods Softw. 29(4), 673–702 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  44. Rintanen, J., Heljanko, K., Niemel, I.: Planning as satisfiability: parallel plans and algorithms for plan search. Artif. Intell. 170, 10311080 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  45. Sarveiva, J.T., Pereira, M.L., Mendes, V.T., Sousa, J.C.: A simulated annealing based approach to solve the generator maintenance scheduling problem. Electric Power Syst. Res. 81, 1283–1291 (2011)CrossRefGoogle Scholar
  46. Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In: Proceedings of AAAI94, pp. 337–343. MIT Press, Washington, USA (1994)Google Scholar
  47. Scheuere, S., Wendolsky, R.: A scatter search heuristic for the capacitated clustering problem. Eur. J. Oper. Res. 169(2), 533–547 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  48. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability problems. In: Proceedings of AAA92, pp. 440–446. MIT Press, Cambridge (1982)Google Scholar
  49. Silvio, F., Pablo, V., D, D., Eneko, M., Igless, M.: Criticality of response time in the usage of metaheuristics in industry. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 937–940 (2016)Google Scholar
  50. Smith, A., Veneris, A., Ali, M., Viglas, A.: Fault diagnosis and logic debugging using Boolean satisfiabilit. IEEE Trans. Comput.-Aid. Des. 24(10), 1606–1621 (2005)CrossRefGoogle Scholar
  51. Smyth, K., Hoos, H., Stutzle, T.: Iterated robust tabu search for MAX-SAT. Advances in Artificial Intelligence, Lecture Notes in Computer Science 2671, 129144 (2003)Google Scholar
  52. Taillard, D.: Robus taboo search for the quadratic assignment problem. Parallel Comput. 17(4–5), 443–455 (1991)MathSciNetCrossRefGoogle Scholar
  53. Teh, Y., Rangaiah, G.: Tabu search for global optimization of continuous functions with application to phase equilibrium calculations. Comput. Chem. Eng. 27(11), 1665–1679 (2003)CrossRefGoogle Scholar
  54. Ting, Y., Limin, W., Xuming, H., Ying, L., Li, Z.: Swarm Intelligence optimization algorithms and their application. In: WHICEB 2015 Proceedings (2015)Google Scholar
  55. Tompkins, A.D., Hoos, H.H.: UBCSAT: an implementation and ex-perimentation environment for SLS algorithms for SAT and MAX-SAT. In: Revised Selected Papers of the Seventh International Conference on Theory and Applications of Satisfiability Testing (SAT-04), volume 3542 of Lecture Notes in Computer Science, pp 306–320 (2005)Google Scholar
  56. Tsang, E., Voudouris, C.: Fast local search and guided local search and their application to British Telecom’s workforce scheduling problem. J. Oper. Res. Lett. Arch. 20(3), 119–127 (1997)CrossRefzbMATHGoogle Scholar
  57. Yarmohamadi, H., Kabudian, J., Mirhosseini, S.: A new dynamic simulated annealing algorithm for global optimization. J. Math. Comput. Sci. 14, 16–23 (2015)CrossRefGoogle Scholar
  58. Zhipeng, L., Jin-Kao, H.: Adaptive memory-based local search for MAX-SAT. J. Appl. Soft Comput. Arch. 12(8), 2063–2071 (2012)CrossRefGoogle Scholar
  59. Zhu, Z., Fang, C., Katzgraber, H. G.: Borealis a generalized global update algorithm for boolean optimization problems, p. 119 (2016). arXiv:1605.09399v1

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Maritime Technology and InnovationSouthEast UniversityKongsbergNorway

Personalised recommendations