Advertisement

Journal of Heuristics

, Volume 25, Issue 1, pp 71–105 | Cite as

Archivers for the representation of the set of approximate solutions for MOPs

  • O. Schütze
  • C. HernándezEmail author
  • E-G. Talbi
  • J. Q. Sun
  • Y. Naranjani
  • F.-R. Xiong
Article
  • 46 Downloads

Abstract

In this paper we address the problem of computing suitable representations of the set of approximate solutions of a given multi-objective optimization problem via stochastic search algorithms. For this, we will propose different archiving strategies for the selection of the candidate solutions maintained by the generation process of the stochastic search process, and investigate them further on analytically and empirically. For all archivers we will provide upper bounds on the approximation quality as well as on the cardinality of the limit solution set. We conclude this work by a comparative study on some test problems in order to visualize the effect of all novel archiving strategies.

Keywords

Multi-objective optimization Pareto set Approximate solutions Convergence Stochastic search algorithm 

References

  1. Al Moubayed, N., Petrovski, A., McCall, J.: D2MOPSO: MOPSO based on decomposition and dominance with archiving using crowding distance in objective and solution spaces. Evol. Comput. 22(1), 47–77 (2014)Google Scholar
  2. Blanquero, R., Carrizosa, E.: A d.c. biobjective location model. J. Glob. Optim. 23(2), 569–580 (2002)MathSciNetzbMATHGoogle Scholar
  3. Bolintineanu, S.: Vector variational principles; \(\epsilon \)-efficiency and scalar stationarity. J. Convex Anal. 8, 71–85 (2001)MathSciNetzbMATHGoogle Scholar
  4. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001). ISBN 0-471-87339-XzbMATHGoogle Scholar
  5. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)zbMATHGoogle Scholar
  6. Eiben, A.E., Rudolph, G.: Theory of evolutionary algorithms: a bird’s eye view. Theor. Comput. Sci. 1, 3–9 (1999)MathSciNetzbMATHGoogle Scholar
  7. Engau, A., Wiecek, M.M.: Generating epsilon-efficient solutions in multiobjective programming. Eur. J. Oper. Res. 177(3), 1566–1579 (2007)zbMATHGoogle Scholar
  8. Forster, O.: Analysis, vol. 3. Vieweg, Braunschweig (1984)zbMATHGoogle Scholar
  9. Hanne, T.: On the convergence of multiobjective evolutionary algorithms. Eur. J. Oper. Res. 117(3), 553–564 (1999)MathSciNetzbMATHGoogle Scholar
  10. Hanne, T.: Global multi-objective optimization using evolutionary algorithms. J. Heuristics 6(3), 347–360 (2000)zbMATHGoogle Scholar
  11. He, M., Xiong, F., Sun, J.: Multi-objective optimization of elastic beams for noise reduction. ASME. J. Vib. Acoust. 139(5), 051014 (2017).  https://doi.org/10.1115/1.4036680 Google Scholar
  12. Hernández, C., Sun, J.Q., Schütze, O.: Computing the set of approximate solutions of a multi-objective optimization problem by means of cell mapping techniques. In: Emmerich, M., et al. (eds.) EVOLVE—A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation IV, pp. 171–188. Springer, Berlin (2013)Google Scholar
  13. Hillermeier, C.: Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach, vol. 135. Springer, Berlin (2001)zbMATHGoogle Scholar
  14. Horoba, C., Neumann, F.: Benefits and drawbacks for the use of epsilon-dominance in evolutionary multi-objective optimization. In: Genetic and Evolutionary Computation Conference (GECCO-2008), pp. 641–648 (2008)Google Scholar
  15. Knowles, J.D., Corne, D.W.: Approximating the non-dominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)Google Scholar
  16. Knowles, J.D., Corne, D.W.: Metaheuristics for multiobjective optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, chapter Bounded Pareto Archiving: Theory and Practice, pp. 39–64. Springer (2004)Google Scholar
  17. Lagunas-Jiménez, J.R., Moo-Yam, V., Ortíz-Moctezuma, B.: Two-degrees-of-freedom robust PID controllers tuning via a multiobjective genetic algorithm. Comput. Sist. 18(2), 259 (2014)Google Scholar
  18. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. 10(3), 263–282 (2002)Google Scholar
  19. Laumanns, M., Zenklusen, R.: Stochastic convergence of random search methods to fixed size pareto front approximations. Eur. J. Oper. Res. 213(2), 414–421 (2011)MathSciNetzbMATHGoogle Scholar
  20. López-Ibáñez, M., Knowles, J.D., Laumanns, M.: On sequential online archiving of objective vectors. In: EMO, pp. 46–60. Springer (2011)Google Scholar
  21. Loridan, P.: \(\epsilon \)-solutions in vector minimization problems. J. Optim. Theory Appl. 42, 265–276 (1984)MathSciNetzbMATHGoogle Scholar
  22. Machin Navas, M., Nebro Urbaneja, A.J.: Multiobjective adaptive metaheuristics. Comput. Sist. 17(1), 53–62 (2013)Google Scholar
  23. Novoa-Hernández, P.: Evolutionary multi-objective optimization for scheduling professor evaluations in Cuban higher education. Comput. Sist. 19(2), 321–335 (2015)Google Scholar
  24. Okabe, T., Jin, Y., Olhofer, M., Sendhoff, B.: Parallel problem solving from nature—PPSN VIII. In: 8th International Conference, Birmingham, UK, 18–22 Sept 2004. Proceedings, chapter On Test Functions for Evolutionary Multi-objective Optimization, pp. 792–802 (2004)Google Scholar
  25. Pareto, V.: Manual of Political Economy. The MacMillan Press, New York (1971). (original edition in French in 1927) Google Scholar
  26. Pérez, N., Cuate, O., Schütze, O., Alvarado, A.: Including users preferences in the decision making for discrete many objective optimization problems. Comput. Sist. 20(4), 589–607 (2016)Google Scholar
  27. Rudolph, G.: Finite Markov chain results in evolutionary computation: a tour d’horizon. Fundam. Inform. 35, 67–89 (1998)MathSciNetzbMATHGoogle Scholar
  28. Rudolph, G., Agapie, A.: Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the 2000 Conference on Evolutionary Computation, vol. 2, pp. 1010–1016, Piscataway, New Jersey. IEEE Press (2000)Google Scholar
  29. Rudolph, G., Naujoks, B., Preuss, M.: Capabilities of EMOA to detect and preserve equivalent pareto subsets. In: EMO ’03: Proceedings of the Evolutionary Multi-criterion Optimization Conference, pp. 36–50 (2006)Google Scholar
  30. Ruhe, G., Fruhwirt, B.: \(\epsilon \)-optimality for bicriteria programs and its application to minimum cost flows. Computing 44, 21–34 (1990)MathSciNetGoogle Scholar
  31. Ruiz, E.R., Segura, C.: Memetic algorithm with hungarian matching based crossover and diversity preservation. Comput. Sist. 22(2), 347–361 (2018)MathSciNetGoogle Scholar
  32. Saha, A., Ray, T., Smith, W.: Towards practical evolutionary robust multi-objective optimization. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 2123–2130 (2011)Google Scholar
  33. Schaeffler, S., Schultz, R., Weinzierl, K.: Stochastic method for the solution of unconstrained vector optimization problems. J. Optim. Theory Appl. 114(1), 209–222 (2002)MathSciNetzbMATHGoogle Scholar
  34. Schütze, O., Coello Coello, C.A., Talbi, E.-G.: Approximating the \(\epsilon \)-efficient set of an MOP with stochastic search algorithms. In: Gelbukh, A., Morales, A.F.K. (eds.) Mexican International Conference on Artificial Intelligence (MICAI-2007), pp. 128–138. Springer, Berlin (2007a)Google Scholar
  35. Schütze, O., Laumanns, M., Tantar, E., Coello, C.A.C., Talbi, E.-G.: Convergence of stochastic search algorithms to gap-free Pareto front approximations. In: Genetic and Evolutionary Computation Conference (GECCO-2007), pp. 892–901 (2007b)Google Scholar
  36. Schütze, O., Coello, C.A.C., Tantar, E., Talbi, E.-G.: Computing finite size representations of the set of approximate solutions of an MOP with stochastic search algorithms. In: GECCO ’08: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 713–720, New York, NY, USA. ACM (2008a)Google Scholar
  37. Schütze, O., Coello, C.A.C., Mostaghim, S., Talbi, E.-G., Dellnitz, M.: Hybridizing evolutionary strategies with continuation methods for solving multi-objective problems. Eng. Optim. 40(5), 383–402 (2008b)MathSciNetGoogle Scholar
  38. Schütze, O., Laumanns, M., Coello, C.A.C., Dellnitz, M., Talbi, E.-G.: Convergence of stochastic search algorithms to finite size Pareto set approximations. J. Glob. Optim. 41(4), 559–577 (2008c)MathSciNetzbMATHGoogle Scholar
  39. Schütze, O., Vasile, M., Coello, C.A.C.: Approximate solutions in space mission design. In: PPSN ’08: Proceedings of the 10th International Conference on Parallel Problem Solving From Nature, pp. 805–814 (2008d)Google Scholar
  40. Schütze, O., Esquivel, X., Lara, A., Coello, C.A.C.: Using the averaged Hausdorff distance as a performance measure in evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)Google Scholar
  41. Schütze, O., Laumanns, M., Tantar, E., Coello, C.A.C., Talbi, E.-G.: Computing gap free Pareto front approximations with stochastic search algorithms. Evol. Comput. 18(1), 65–96 (2010)Google Scholar
  42. Sun, J.Q.: Vibration and sound radiation of non-uniform beams. J. Sound Vib. 185(5), 827–843 (1995)zbMATHGoogle Scholar
  43. Tanaka, T.: A new approach to approximation of solutions in vector optimization problems. In: Fushini, M., Tone, K., (eds.) Proceedings of APORS 1994, pp. 497–504 (1995)Google Scholar
  44. Tantar, A.A., Tantar, E., Schütze, O.: Asymmetric quadratic landscape approximation model. In: GECCO ’14: Proceedings of the 16th Annual Conference on Genetic and Evolutionary Computation, pp. 493–500 (2014)Google Scholar
  45. Vargas, A., Bogoya, J.: A generalization of the averaged Hausdorff distance. Comput. Sist. 22(2), 331–345 (2018)Google Scholar
  46. White, D.J.: Epsilon efficiency. J. Optim. Theory Appl. 49(2), 319–337 (1986)MathSciNetzbMATHGoogle Scholar
  47. White, D.J.: Epsilon-dominating solutions in mean–variance portfolio analysis. Eur. J. Oper. Res. 105(3), 457–466 (1998)zbMATHGoogle Scholar
  48. Yuen, J., Gao, S., Wagner, M., Neumann, F.: An adaptive data structure for evolutionary multi-objective algorithms with unbounded archives. In: IEEE Congress on Evolutionary Computation (CEC), 2012 , pp. 1–8 (2012)Google Scholar
  49. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. Schütze
    • 1
  • C. Hernández
    • 1
    Email author
  • E-G. Talbi
    • 2
  • J. Q. Sun
    • 3
  • Y. Naranjani
    • 3
  • F.-R. Xiong
    • 4
  1. 1.Computer Science DepartmentCinvestav-IPNMexico CityMexico
  2. 2.University of Lille 1Villeneuve d’AscqFrance
  3. 3.School of EngineeringUniversity of CaliforniaMercedUSA
  4. 4.Department of MechanicsTianjin UniversityTianjinChina

Personalised recommendations