Journal of Heuristics

, Volume 25, Issue 1, pp 1–45 | Cite as

A greedy memetic algorithm for a multiobjective dynamic bin packing problem for storing cooling objects

  • Kristina Yancey SpencerEmail author
  • Pavel V. Tsvetkov
  • Joshua J. Jarrell


In this paper, a multiobjective dynamic bin packing problem for storing cooling objects is introduced along with a metaheuristic designed to work well in mixed-variable environments. The dynamic bin packing problem is based on cookie production at a bakery, where cookies arrive in batches at a cooling rack with limited capacity and are packed into boxes with three competing goals. The first is to minimize the number of boxes used. The second objective is to minimize the average initial heat of each box, and the third is to minimize the maximum time until the boxes can be moved to the storefront. The metaheuristic developed here incorporated greedy heuristics into an adaptive evolutionary framework with partial decomposition into clusters of solutions for the crossover operator. The new metaheuristic was applied to a variety benchmark bin packing problems and to a small and large version of the dynamic bin packing problem. It performed as well as other metaheuristics in the benchmark problems and produced more diverse solutions in the dynamic problems. It performed better overall in the small dynamic problem, but its performance could not be proven to be better or worse in the large dynamic problem.


Dynamic bin packing problem Multiobjective combinatorial optimization Metaheuristics Memetic algorithms 



We would like to thank Sergiy Butenko for his valuable feedback during development of GAMMA-PC. The graphs in this paper were created using Matplotlib (Hunter 2007).


  1. Abdi, H.: Encyclopedia of Measurements and Statistics, Thousand Oaks, CA, Chapter, The Bonferroni and Sidak Corrections for Multiple Procedures (2007)Google Scholar
  2. Adra, S.F., Flemin, P.J.: Diversity management in evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 15(2), 183–195 (2011). CrossRefGoogle Scholar
  3. Anily, S., Bramel, J., Simchi-Levi, D.: Worst-case analysis of heuristics for the bin packing problem with general cost structures. Oper. Res. 42(2), 287–298 (1994)CrossRefzbMATHGoogle Scholar
  4. Butenko, S., Pardalos, P.M.: Numerical Methods and Optimization: An Introduction. CRC Press, Boca Raton (2014)CrossRefzbMATHGoogle Scholar
  5. Cao, Y.J., Jiang, L., Wu, Q.H.: An evolutionary programming approach to mixed-variable optimization problems. Appl. Math. Model. 24, 931–942 (2000)CrossRefzbMATHGoogle Scholar
  6. Cengel, Y.A.: Heat Transfer: A Practical Approach, 2nd edn. Mcgraw-Hill, New York (2002). ISBN-10: 0072458933Google Scholar
  7. Chwatal, A.M., Pirkwieser, S.: Solving the two-dimensional bin-packing problem with variable bin sizes by greedy randomized adaptive search procedures and variable neighborhood search. In: International Conference on Computer Aided Systems Theory, pp. 456–463 (2011)Google Scholar
  8. Dahmani, N., Clautiaux, F., Krichen, S., Talbi, E.G.: Self-adaptive metaheuristics for solving a multi-objective 2-dimensional vector packing problem. Appl. Soft Comput. 16, 124–136 (2014)CrossRefGoogle Scholar
  9. Dartey, C.K., Finley, J.W., Thulin, R.R.: Process for Preparing Chocolate Chip Cookies Containing Low Melting Fat and Product. U.S. Patent No. 4,722,849, Issued Date February 2 (1988)Google Scholar
  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  11. Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. J. Global Optim. 6, 109–133 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Fonseca, C.M., Knowles, J.D., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. In: Evolutionary Multi-Criterion Optimization: First International Conference, EMO 2005, Guanajauto, Mexico (2005)Google Scholar
  13. Fonseca, C.M., Guerreiro, A.P., López-Ibáñez, M., Paquete, L.: On the computation of the empirical attainment function. In: Takahashi, R.H., Deb, K., Wanner, E.F., Greco, S. (eds.) Evolutionary Multi-Criterion Optimization: 6th International Conference, EMO 2011, Ouro Preto, Brazil, April 5–8, 2011. Proceedings, pp. 106–120. Springer, Berlin (2011)Google Scholar
  14. Goh, C.K., Tan, K.C., Liu, D.S., Chiam, S.: A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design. Eur. J. Oper. Res. 202, 42–54 (2010)CrossRefzbMATHGoogle Scholar
  15. Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O.: Inferential performance assessment of stochastic optimisers and the attainment function. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A. (eds.) Evolutionary Multi-Criterion Optimization: First International Conference, EMO 2001, Zurich, Switzerland, March 7–9, 2001. Proceedings, pp. 213–225. Springer, Berlin (2001)Google Scholar
  16. Hunter, J.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007)CrossRefGoogle Scholar
  17. Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Implementation of multiobjective memetic algorithms for combinatorial optimization problems: a knapsack problem case study. Stud. Comput. Intell. 171, 27–49 (2009)zbMATHGoogle Scholar
  18. Ke, L., Zhang, Q., Battiti, R.: Hybridization of decomposition and local search for multiobjective optimization. IEEE Tran. Cybern. 44(10), 1808–1820 (2014)CrossRefGoogle Scholar
  19. Kulacki, F.A., Kennedy, S.C.: Measurement of the thermophysical properties of common cookie cough. J. Food Sci. 43, 380–384 (1978)CrossRefGoogle Scholar
  20. Lara, O.D., Labrador, M.A.: A multiobjective ant colony-based optimization algorithm for the bin packing problem with load balancing. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)Google Scholar
  21. Lee, K.D., Hubbard, S.: Data Structures and Algorithms with Python. Undergraduate Topics in Computer Science, Springer International Publishing Switzerland (2015)Google Scholar
  22. Li, Y., Tang, X., Cai, W.: Dyanmic bin packing for on-demand cloud resource allocation. IEEE Trans. Parallel Distrib. Syst. 27(1), 157–170 (2016)CrossRefGoogle Scholar
  23. Liu, D.S., Tan, K.C., Huang, S.Y., Goh, C.K., Ho, W.K.: On solving multiobjective bin packing problems using evolutionary particle swarm optimization. Eur. J. Oper. Res. 190(2), 357–382 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York, Chapter 8. Bin-packing problem, pp. 221–245 (1990)Google Scholar
  25. Nicoarǎ, E.S.: Performance measures for multi-objective optimization algorithms. Buletinul Universitǎţii Petrol–Gaze din Ploieşti, Seria Matematicǎ-Informaticǎ-Fizicǎ 59(1), 19–28 (2007)Google Scholar
  26. Nitin, N., Karwe, M.V.: Heat transfer coefficient for model cookies in a turbulent multiple jet impingement system. In: Welti-Chanes, J., Velez-Ruiz, J.F., Barbosa-Cánovas, G.V. (eds.) Transport Phenomena in Food Processing, pp. 357–376. CRC Press, Boca Raton (2002)Google Scholar
  27. Ochoa, G., Walker, J., Hyde, M., Curtois, T.: Adaptive evolutionary algorithms and extensions to the hyflex hyper-heuristic framework. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) Parallel Problem Solving from Nature—PPSN XII: 12th International Conference, Taormina, Italy, September 1–5, 2012, Proceedings, Part II, Springer, Berlin, pp. 418–427 (2012)Google Scholar
  28. Sathe, M., Schenk, O., Burkhart, H.: Solving Bi-objective Many-Constraint Bin Packing Problems in Automobile Sheet Metal Forming Processes, pp. 246–260. Springer, Berlin (2009)Google Scholar
  29. Satterthwaite, F.: An approximate distribution of estimates of variance components. Biom. Bull. 2(6), 110–114 (1946)CrossRefGoogle Scholar
  30. Silva, E., Oliveira, J.F., Wäscher, G.: 2DCPackGen: a problem generator for two-dimensional rectangular cutting and packing problems. Eur. J. Oper. Res. 237, 846–856 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  31. Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by MOEA/D with gaussian process model. IEEE Trans. Evol. Comput. 14(3), 456–473 (2010)CrossRefGoogle Scholar
  32. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evolut. Comput. 1(1), 32–49 (2011)CrossRefGoogle Scholar
  33. Zitzler, E., Thiele, L.: Parallel Problem Solving from Nature (PPSN V), Springer, Berlin, Germany, Book Section Multiobjective Optimization Using Evolutionary Algorithms—A Comparative Case Study, pp. 292–301 (1998)Google Scholar
  34. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Fonseca, VGd: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Texas A&M University, 3133 TAMUCollege StationUSA
  2. 2.Oak Ridge National LaboratoryOak RidgeUSA
  3. 3.Idaho National LaboratoryIdaho FallsUSA

Personalised recommendations