Advertisement

Journal of Heuristics

, Volume 24, Issue 4, pp 667–695 | Cite as

A study on exponential-size neighborhoods for the bin packing problem with conflicts

  • Renatha Capua
  • Yuri Frota
  • Luiz Satoru Ochi
  • Thibaut Vidal
Article
  • 127 Downloads

Abstract

We propose an iterated local search based on several classes of local and large neighborhoods for the bin packing problem with conflicts. This problem, which combines the characteristics of both bin packing and vertex coloring, arises in various application contexts such as logistics and transportation, timetabling, and resource allocation for cloud computing. We introduce \({\mathcal O}(1)\) evaluation procedures for classical local-search moves, polynomial variants of ejection chains and assignment neighborhoods, an adaptive set covering-based neighborhood, and finally a controlled use of 0-cost moves to further diversify the search. The overall method produces solutions of good quality on the classical benchmark instances and scales very well with an increase of problem size. Extensive computational experiments are conducted to measure the respective contribution of each proposed neighborhood. In particular, the 0-cost moves and the large neighborhood based on set covering contribute very significantly to the search. Several research perspectives are open in relation to possible hybridizations with other state-of-the-art mathematical programming heuristics for this problem.

Keywords

Metaheuristics Bin packing with conflicts Large neighborhood search Ejection chains Assignment Set covering 

Notes

Acknowledgements

This research was partially supported by the Brazilian agencies CAPES, CNPq and FAPERJ.

References

  1. Ahuja, R.K., Ergun, O., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discrete Appl. Math. 123(1–3), 75–102 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph coloring. Eur. J. Oper. Res. 151(2), 379–388 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Comput. Oper. Res. 35(3), 960–975 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)CrossRefGoogle Scholar
  5. Deineko, V.G., Woeginger, G.J.: A study of exponential neighborhoods for the travelling salesman problem and for the quadratic assignment problem. Math. Program. 87(3), 519–542 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Delorme, M., Iori, M., Martello, S.: Bin packing and cutting stock problems: mathematical models and exact algorithms. Eur. J. Oper. Res. 255(1), 1–20 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Dowsland, K., Thompson, J.: An improved ant colony optimisation heuristic for graph colouring. Discrete Appl. Math. 156(3), 313–324 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Elhedhli, S., Li, L., Gzara, M., Naoum-Sawaya, J.: A branch-and-price algorithm for the bin packing problem with conflicts. Inf. J. Comput. 23(3), 404–415 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Epstein, L., Levin, A.: On bin packing with conflicts. SIAM J. Optim. 19(3), 1270–1298 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Epstein, L., Levin, A., Stee, R.: Two-dimensional packing with conflicts. Acta Inf. 45(3), 155–175 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. J. Heuristics 2(1), 5–30 (1996)CrossRefGoogle Scholar
  12. Fernandes Muritiba, A., Iori, M., Malaguti, E., Toth, P.: Algorithms for the bin packing problem with conflicts. Inf. J. Comput. 22(3), 401–415 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Fleszar, K., Charalambous, C.: Average-weight-controlled bin-oriented heuristics for the one-dimensional bin-packing problem. Eur. J. Oper. Res. 210(2), 176–184 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Galinier, P., Hao, J.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Gendreau, M., Laporte, G., Semet, F.: Heuristics and lower bounds for the bin packing problem with conflicts. Comput. Oper. Res. 31(3), 347–358 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Glover, F.: Ejection chains, reference structures and alternating path methods for traveling salesman problems. Discrete Appl. Math. 65(1–3), 223–253 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Gutin, G.: Exponential neighbourhood local search for the traveling salesman problem. Comput. Oper. Res. 26(4), 313–320 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Hamdi-Dhaoui, K., Labadie, N., Yalaoui, A.: The bi-objective two-dimensional loading vehicle routing problem with partial conflicts. Int. J. Prod. Res. 52(19), 5565–5582 (2014)CrossRefzbMATHGoogle Scholar
  19. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Jansen, K.: An approximation scheme for bin packing with conflicts. J. Comb. Optim. 3(4), 363–377 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Jansen, K., Öhring, S.: Approximation algorithms for time constrained scheduling. Inf. Comput. 132(2), 85–108 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Khanafer, A., Clautiaux, F., Talbi, E.: New lower bounds for bin packing problems with conflicts. Eur. J. Oper. Res. 206(2), 281–288 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1–2), 83–97 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Laporte, G., Desroches, S.: Examination timetabling by computer. Comput. Oper. Res. 11(4), 351–360 (1984)CrossRefGoogle Scholar
  25. Lewis, R.: A Guide to Graph Colouring: Algorithms and Applications. Springer, Berlin (2016)CrossRefzbMATHGoogle Scholar
  26. Lewis, R., Thompson, J., Mumford, C., Gillard, J.: A wide-ranging computational comparison of high-performance graph colouring algorithms. Comput. Oper. Res. 39(9), 1933–1950 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Malaguti, E., Toth, P.: A survey on vertex coloring problems. Int. Trans. Oper. Res. 17(1), 1–34 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Malaguti, E., Monaci, M., Toth, P.: A metaheuristic approach for the vertex coloring problem. Inf. J. Comput. 20(2), 302–316 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. Masson, R., Vidal, T., Michallet, J., Penna, P.H.V., Petrucci, V., Subramanian, A., Dubedout, H.: An iterated local search heuristic for multi-capacity bin packing and machine reassignment problems. Expert Syst. Appl. 40(13), 5266–5275 (2013)CrossRefGoogle Scholar
  30. Minh, T.T., Hoai, T.V., Nguyet, T.T.N.: A memetic algorithm for waste collection vehicle routing problem with time windows and conflicts. In: Murgante, B. (ed.) Computational Science and Its Applications—ICCSA 2013, pp. 485–499. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  31. Monaci, M., Toth, P.: A set-covering-based heuristic approach for bin-packing problems. Inf. J. Comput. 18(1), 71–85 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  32. Morgenstern, C.: Distributed coloration neighborhood search. In: Johnson, D., Trick, M. (eds.) Discrete Mathematics and Theoretical Computer Science, pp. 335–358. American Mathematical Society, Providence (1996)Google Scholar
  33. Muter, I., Birbil, S.I., Sahin, G.: Combination of metaheuristic and exact algorithms for solving set covering-type optimization problems. Inf. J. Comput. 22(4), 603–619 (2010)CrossRefzbMATHGoogle Scholar
  34. Quiroz-Castellanos, M., Cruz-Reyes, L., Torres-Jimenez, J., Gómez, C., Huacuja, H.J.F., Alvim, A.C.: A grouping genetic algorithm with controlled gene transmission for the bin packing problem. Comput. Oper. Res. 55, 52–64 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  35. Sadykov, R., Vanderbeck, F.: Bin packing with conflicts: a generic branch-and-price algorithm. Inf. J. Comput. 25(2), 244–255 (2013)MathSciNetCrossRefGoogle Scholar
  36. Sarvanov, V., Doroshko, N.: The approximate solution of the travelling salesman problem by a local algorithm with scanning neighborhoods of factorial cardinality in cubic time (in Russian). Software: Algorithms and Programs 31, pp. 11–13. Mathematical Institute of the Belarusian Academy of Sciences, Minsk (1981)Google Scholar
  37. Sörensen, K.: Metaheuristics—the metaphor exposed. Int. Tran. Oper. Res. 22(1), 3–18 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  38. Subramanian, A., Uchoa, E., Ochi, L.: A hybrid algorithm for a class of vehicle routing problems. Comput. Oper. Res. 40(10), 2519–2531 (2013)CrossRefzbMATHGoogle Scholar
  39. Thompson, P., Psaraftis, H.: Cyclic transfer algorithms for multi-vehicle routing and scheduling problems. Oper. Res. 41(5), 935–946 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  40. Toth, P., Tramontani, A.: An integer linear programming local search for capacitated vehicle routing problems. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges, pp. 275–295. Springer, Boston (2008)CrossRefGoogle Scholar
  41. Vidal, T., Crainic, T., Gendreau, M., Prins, C.: Heuristics for multi-attribute vehicle routing problems: a survey and synthesis. Eur. J. Oper. Res. 231(1), 1–21 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Inst. ComputaçãoUniversidade Federal FluminenseNiteróiBrazil
  2. 2.Dep. de InformáticaPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations