Advertisement

A Maxmin Approach for the Equilibria of Vector-Valued Games

  • A. Zapata
  • A. M. MármolEmail author
  • L. Monroy
  • M. A. Caraballo
Article
  • 30 Downloads

Abstract

This paper deals with the equilibria of non-cooperative games where the preferences of the players are incomplete and can be represented by vector-valued functions. In the literature, these preferences are frequently approximated by means of additive value functions. However, other value functions can also be considered. We propose a weighted maxmin approach to represent players’ preferences, where the weights are interpreted as the relative importance of the corresponding components of the vector payoffs. We establish the relationship between the equilibria, the weak equilibria and the ideal equilibria of vector-values games and the equilibria of the scalar weighted maxmin games. The potential applicability of the theoretical results is illustrated with the analysis of a vector-valued bimatrix game where all the equilibria are generated, and it is shown how the resulting equilibrium strategies depend on the values of the parameters which represent the importance assigned to the components of the vector-valued payoffs.

Keywords

Equilibria Vector-valued games Maxmin Rawlsian function 

JEL Classification

D43 D81 L10 

Notes

Acknowledgements

The research of the authors is partially supported by the Spanish Ministry of Science and Innovation, Project ECO2015-68856-P (MINECO/FEDER).

References

  1. Aumann R (1962) Utility theory without the completeness axiom. Econometrica 30:445–462CrossRefGoogle Scholar
  2. Bade S (2005) Nash equilibrium in games with incomplete preferences. Econ Theory 26:309–332CrossRefGoogle Scholar
  3. Bewley T (1986) Knightian utility theory: Part 1. In: Cowles foundation discussion paper 807Google Scholar
  4. Blackwell D (1956) An analog of the minimax theorem for vector payoffs. Pac J Math 6:1–8CrossRefGoogle Scholar
  5. Borm PEM, Tijs SH, Van Den Aarssen JCM (1988) Pareto equilibria in multiobjective games. Methods Oper Res 60:303–312Google Scholar
  6. Borm P, Vermeulen D, Voorneveld M (2003) The structure of the set of equilibria for two person multicriteria games. Eur J Oper Res 148:480–493CrossRefGoogle Scholar
  7. Bosi G, Herden G (2012) Continuous multi-utility representations of preorders. J Math Econ 48:212–218CrossRefGoogle Scholar
  8. Caraballo MA, Mármol AM, Monroy L, Buitrago E (2015) Cournot competition under uncertainty. Conservative and optimistic equilibria. Rev Econ Des 19:145–165Google Scholar
  9. Chateauneuf A, Eichberger J, Grant S (2007) Choice under uncertainty with the best and worst in mind: neo-additive capacities. J Econ Theory 137:538–567CrossRefGoogle Scholar
  10. Chebbi S (2008) Existence of Pareto equilibria for non-compact constrained multi-criteria games. J Appl Anal 14:219–226CrossRefGoogle Scholar
  11. Contini BM (1966) A decision model under uncertainty with multiple payoffs. In: Mensch A (ed) Theory of games. Techniques and Applications, New YorkGoogle Scholar
  12. Corley HW (1985) Games with vector payoffs. J Optim Theory Appl 47:491–498CrossRefGoogle Scholar
  13. Dubra J, Maccheroni F, Ok E (2004) Expected utility theory without the completeness axiom. J Econ Theory 115:118–133CrossRefGoogle Scholar
  14. Evren O, Ok E (2011) On the multi-utility representation of preference relations. J Math Econ 47:554–563CrossRefGoogle Scholar
  15. Ghose D, Prasad UR (1989) Solution concepts in two-person multicriteria games. J Optim Theory Appl 63:167–189CrossRefGoogle Scholar
  16. Hinojosa MA, Mármol AM (2011) Egalitarianism and utilitarianism in multiple criteria decision problems with partial information. Group Decis Negot 20:707–724CrossRefGoogle Scholar
  17. Keeney RL, Raiffa H (1976) Decisions with multiple objectives: preferences and value tradeoffs. Wiley, New YorkGoogle Scholar
  18. Kozhan R, Salmon M (2009) Uncertainty aversion in a heterogeneous agent model of foreign exchange rate formation. J Econ Dyn Control 33:1106–1122CrossRefGoogle Scholar
  19. Luce RD, Raiffa H (1957) Games and decisions: introduction and critical survey. Wiley, New YorkGoogle Scholar
  20. Mármol AM, Monroy L, Caraballo MA, Zapata A (2017) Equilibria with vector-valued utilities and preference information. The analysis of a mixed duopoly. Theory Decis 83:365–383CrossRefGoogle Scholar
  21. Mármol AM, Ponsatí C (2008) Bargaining over multiple issues with maximin and leximin preferences. Soc Choice Welf 30:211–223CrossRefGoogle Scholar
  22. Mill JS (1971) Utilitarianism. In: Gorovitz S (ed) Bobbs-Merrill Company Inc, IndianapolisGoogle Scholar
  23. Monroy L, Caraballo MA, Mármol AM, Zapata A (2017) Agents with other-regarding preferences in the commons. Metroeconomica 68:947–965CrossRefGoogle Scholar
  24. Monroy L, Caraballo MA, Mármol AM (2018) Duopolistic competition with multiple scenarios and different attitudes toward uncertainty. Int Trans Oper Res 25:941–961CrossRefGoogle Scholar
  25. Nash J (1951) Non-cooperative games. Ann Math 54:286–295CrossRefGoogle Scholar
  26. Ok EA (2002) Utility representation of an incomplete preference relation. J Econ Theory 104:429–449CrossRefGoogle Scholar
  27. Ok EA, Ortoleva P, Riella G (2012) Incomplete preferences under uncertainty: indecisiveness in beliefs versus tastes. Econometrica 80:1791–1808CrossRefGoogle Scholar
  28. Puerto J, Perea F (2018) On minimax and Pareto optimal security payoffs in multicriteria games. J Math Anal Appl 457:1634–1648CrossRefGoogle Scholar
  29. Rawls J (1971) A theory of justice, Revised edn. Harvard University Press, CambridgeGoogle Scholar
  30. Shapley LS (1959) Equilibrium points in games with vector payoffs. Nav Res Logist Q 6:57–61CrossRefGoogle Scholar
  31. Voorneveld M (1999) Pareto-optimal security strategies as minimax strategies of a standard matrix game. J Optim Theory Appl 102:203–210CrossRefGoogle Scholar
  32. Voorneveld M, Grahn S, Dufwenberg M (2000) Ideal equilibria in noncooperative multicriteria games. Math Methods Oper Res 52:65–77CrossRefGoogle Scholar
  33. Wakker P (2001) Testing and characterizing properties of nonadditive measures through violations of the sure-thing principle. Econometrica 69:1039–1059CrossRefGoogle Scholar
  34. Wald A (1950) Statistical decision functions. Wiley, New YorkGoogle Scholar
  35. Wang SY (1993) Existence of Pareto equilibrium. J Optim Theory Appl 79:373–384CrossRefGoogle Scholar
  36. Zapata A, Caraballo MA, Monroy L, Mármol AM (2017) Hurwicz’s criterion and the equilibria of duopoly models. Cent Eur J Oper Res  https://doi.org/10.1007/s10100-017-0517-4
  37. Zapata A, Mármol AM, Monroy L, Caraballo MA (2018) When the other matters. The battle of the sexes revisited. In: Daniele P, Scrimeli L (eds) New trends in emerging complex real life problems, AIRO Springer Series 1,  https://doi.org/10.1007/978-3-030-00473-6_53
  38. Zeleny M (1975) Games with multiple payoff. Int J Game Theory 4:179–191CrossRefGoogle Scholar
  39. Zhao J (1991) The equilibria of multiple objective games. Int J Game Theory 20:171–182CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Universidad de SevillaSevilleSpain

Personalised recommendations