Advertisement

Plant Growth Regulation

, Volume 87, Issue 1, pp 93–108 | Cite as

Ιntra-species grafting induces epigenetic and metabolic changes accompanied by alterations in fruit size and shape of Cucurbita pepo L.

  • Aliki Xanthopoulou
  • Aphrodite Tsaballa
  • Ioannis Ganopoulos
  • Aliki Kapazoglou
  • Evangelia Avramidou
  • Filippos A. Aravanopoulos
  • Theodoros Moysiadis
  • Maslin Osathanunkul
  • Athanasios Tsaftaris
  • Andreas G. Doulis
  • Apostolos Kalivas
  • Eirini Sarrou
  • Stefan Martens
  • Irini Nianiou-ObeidatEmail author
  • Panagiotis MadesisEmail author
Original paper

Abstract

To further understand the impact of grafting on fruit characteristics and to comprehend the mechanisms involved in graft-induced changes we studied homo- and hetero- grafted Cucurbita pepo cultivars (cv.) that vary in fruit size and shape. C. pepo cv. ‘Munchkin’ and cv. ‘Big Moose’ as well as cv. ‘Round green’ and cv. ‘Princess’ were homo-grafted and reciprocally hetero-grafted. The results show significant changes in fruit size when ‘Big Moose’ was grafted onto ‘Munchkin’ rootstocks in comparison to homo-grafted controls. Statistically significant changes were also observed in fruit shape when cv. ‘Princess’ was grafted on cv. ‘Round green’. This is the first report of such phenotypic changes after intra-species/inter-cultivar grafting in Cucurbitaceae. Additionally, we found significant changes in (i) secondary metabolite profile, (ii) global DNA methylation pattern and (iii) miRNA expression patterns in grafted scions and (iv) DNA methylation on graft-induced phenotypic changes in grafted plants. Our results contribute to further understanding graft-induced effects on fruit morphology in intra-species grafting. Furthermore, our results pave the way for understanding the role of phenolic metabolites and epigenetic molecular mechanisms on the phenotypic changes recorded.

Keywords

Cucurbitaceae MSAP methylation sensitive amplified polymorphisms markers Epigenetic Phenolics miRNAs Fruit morphology 

Supplementary material

10725_2018_456_MOESM1_ESM.doc (750 kb)
Supplementary material 1 (DOC 750 KB)
10725_2018_456_MOESM2_ESM.doc (32 kb)
Supplementary material 2 (DOC 32 KB)
10725_2018_456_MOESM3_ESM.docx (58 kb)
Supplementary material 3 (DOCX 57 KB)

References

  1. Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131(14):3357–3365Google Scholar
  2. Aida M, Tasaka M (2006) Genetic control of shoot organ boundaries. Curr Opin Plant Biol 9(1):72–77Google Scholar
  3. Albacete A, Martinez-Anddujar C, Martinez-Perez A, Thompson AJ, Dodd IC, Perez-Alfocea F (2015) Unravelling rootstock—scion interactions to improve food security. J Exp Bot.  https://doi.org/10.1093/jxb/erv027 Google Scholar
  4. Avramidou E, Kapazoglou A, Aravanopoulos FA, Xanthopoulou A, Ganopoulos I, Tsaballa A, Madesis P, Doulis AG, Tsaftaris A (2014) Global DNA methylation changes in Cucurbitaceae inter-species grafting. Crop Breed Appl Biotechnol 15(2):112–116Google Scholar
  5. Baker CC, Sieber P, Wellmer F, Meyerowitz EM (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 15(4):303–315Google Scholar
  6. Barrera-Figueroa BE, Wu Z, Liu R (2013) Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution. Front Biol 8(2):189–197Google Scholar
  7. Birtić S, Dussort P, Pierre F-X, Bily AC, Roller M (2015) Carnosic acid. Phytochemistry 115:9–19Google Scholar
  8. Boeing JS, Barizão ÉO, e Silva BC, Montanher PF, de Cinque Almeida V, Visentainer JV (2014) Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chem Cent J 8(1):1–9Google Scholar
  9. Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20Google Scholar
  10. Cohen R, Burger Y, Horev C, Koren A, Edelstein M (2007) Introducing grafted cucurbits to modern agriculture: the Israeli experience. Plant Dis 91:916–923Google Scholar
  11. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X (2013) MicroRNA: function, detection, and bioanalysis. Chem Rev 113(8):6207–6233Google Scholar
  12. Fujimoto R, Sasaki T, Ishikawa R, Osabe K, Kawanabe T, Dennis ES (2012) Molecular mechanisms of epigenetic variation in plants. Int J Mol Sci 13(8):9900–9922Google Scholar
  13. Gisbert C, Prohens J, Raigón MD, Stommel JR, Nuez F (2011) Eggplant relatives as sources of variation for developing new rootstocks: effects of grafting on eggplant yield and fruit apparent quality and composition. Sci Hortic 128(1):14–22Google Scholar
  14. Gisbert C, Prohens J, Nuez F (2012) Performance of eggplant grafted onto cultivated, wild, and hybrid materials of eggplant and tomato. Int J Plant Prod 5(4):367–380Google Scholar
  15. Goldschmidt EE (2014) Plant grafting: new mechanisms, evolutionary implications. Front Plant Sci 5:727Google Scholar
  16. Haoa Y-J, Wen X-P, Deng X-X (2004) Genetic and epigenetic evaluations of citrus calluses recovered from slow-growth culture. J Plant Physiol 161(4):479–484Google Scholar
  17. Haroldsen V, Szczerba MW, Aktas H, Lopez J, Odias MJ, Chi-Ham CL, Labavitch J, Bennett AB, Powell ALT (2012) Mobility of transgenic nucleic acids and proteins within grafted rootstocks for agricultural improvement. Front Plant Sci 3:39Google Scholar
  18. Huang Y, Bie Z, Liu P, Niu M, Zhen A, Liu Z, Lei B, Gu D, Lu C, Wang B (2013) Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation. Sci Hortic 149(0):47–54.  https://doi.org/10.1016/j.scienta.2012.04.018 Google Scholar
  19. Iswaldi I, Gómez-Caravaca AM, Lozano-Sánchez J, Arráez-Román D, Segura-Carretero A, Fernández-Gutiérrez A (2013) Profiling of phenolic and other polar compounds in zucchini (Cucurbita pepo L.) by reverse-phase high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Res Int 50(1):77–84Google Scholar
  20. Kalantidis K, Schumacher HT, Alexiadis T, Helm JM (2008) RNA silencing movement in plants. Biol Cell 100(1):13–26Google Scholar
  21. Katayama S, Ohno F, Yamauchi Y, Kato M, Makabe H, Nakamura S (2013) Enzymatic synthesis of novel phenol acid rutinosides using rutinase and their antiviral activity in vitro. J Agric Food Chem 61(40):9617–9622Google Scholar
  22. Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59(1):85–92Google Scholar
  23. Krumbein A, Schwarz D (2013) Grafting: a possibility to enhance health-promoting and flavour compounds in tomato fruits of shaded plants? Sci Hortic 149:97–107Google Scholar
  24. Kusumanjali K, Kumari G, Srivastava PS, Das S (2012) Sequence conservation and divergence in miR164C1 and its target, CUC1, in Brassica species. Plant Biotechnol Rep 6(2):149–163Google Scholar
  25. Kyriacou MC, Soteriou GA, Rouphael Y, Siomos AS, Gerasopoulos D (2015) Configuration of watermelon fruit quality in response to rootstock-mediated harvest maturity and postharvest storage. J Sci Food Agric 96:2400–2409Google Scholar
  26. Lee J-M, Kubota C, Tsao SJ, Bie Z, Echevarria PH, Morra L, Oda M (2010) Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci Hortic 127(2):93–105.  https://doi.org/10.1016/j.scienta.2010.08.003 Google Scholar
  27. Li X, Bian H, Song D, Ma S, Han N, Wang J, Zhu M (2013) Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression. Ann Bot 111(5):791–799Google Scholar
  28. Li S, Castillo-Gonzalez C, Yu B, Zhang X (2016) The functions of plant small RNAs in development and in stress responses. Plant J 90:654–670Google Scholar
  29. Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232Google Scholar
  30. Lucas WJ, Yoo B-C, Kragler F (2001) RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2(11):849–857Google Scholar
  31. Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14(12):1035–1046Google Scholar
  32. Melnyk CW, Molnar A, Baulcombe DC (2011) Intercellular and systemic movement of RNA silencing signals. EMBO J 30(17):3553–3563Google Scholar
  33. Mermigka G, Verret F, Kalantidis K (2015) RNA silencing movement in plants. J Integr Plant Biol 100:13–26Google Scholar
  34. Moncada A, Miceli A, Vetrano F, Mineo V, Planeta D, D’Anna F (2013) Effect of grafting on yield and quality of eggplant (Solanum melongena L.). Sci Hortic 149:108–114Google Scholar
  35. Mudge K, Janick J, Scofield S, Goldschmidt EE (2009) A history of grafting. In: Horticultural reviews. Wiley, pp 437–493.  https://doi.org/10.1002/9780470593776.ch9
  36. Muñoz-Falcón JE, Prohens J, Rodríguez-Burruezo A, Nuez F (2008) Potential of local varieties and their hybrids for the improvement of eggplant production in the open field and greenhouse cultivation. J Food Agric Environ 6(1):83Google Scholar
  37. Nascimento PLA, Nascimento TCES, Ramos NSM, Silva GR, Gomes JEG, Falcão REA, Moreira KA, Porto ALF, Silva T (2014) Quantification, antioxidant and antimicrobial activity of phenolics isolated from different extracts of Capsicum frutescens (Pimenta Malagueta). Molecules 19(4):5434–5447Google Scholar
  38. Nayak B, Liu RH, Tang J (2015) Effect of processing on phenolic antioxidants of fruits, vegetables, and grains—a review. Crit Rev Food Sci Nutr 55(7):887–918Google Scholar
  39. Nicoletto C, Tosini F, Sambo P (2013) Effect of grafting on biochemical and nutritional traits of ‘Cuore di Bue’ tomatoes harvested at different ripening stages. Acta Agric Scand Sect B 63(2):114–122Google Scholar
  40. Obrero A, Die JV, Román B, Gómez P, Nadal S, González-Verdejo CI (2011) Selection of reference genes for gene expression studies in zucchini (Cucurbita pepo) using qPCR. J Agric Food Chem 59(10):5402–5411Google Scholar
  41. Omid A, Keilin T, Glass A, Leshkowitz D, Wolf S (2007) Characterization of phloem-sap transcription profile in melon plants. J Exp Bot 58(13):3645–3656Google Scholar
  42. Orsini F, Sanoubar R, Oztekin GB, Kappel N, Tepecik M, Quacquarelli C, Tuzel Y, Bona S, Gianquinto G (2013) Improved stomatal regulation and ion partitioning boosts salt tolerance in grafted melon. Funct Plant Biol 40(6):628–636.  https://doi.org/10.1071/FP12350 Google Scholar
  43. Palauqui JC, Elmayan T, Pollien JM, Vaucheret H (1997) Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J 16(15):4738–4745Google Scholar
  44. Passam HC, Stylianou M, Kotsiras A (2005) Performance of eggplant grafted on tomato and eggplant rootstocks. Eur J Hortic Sci 70:130–134Google Scholar
  45. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36–e36Google Scholar
  46. Rouphael Y, Cardarelli M, Bassal A, Leonardi C, Giuffrida F, Colla G (2012) Vegetable quality as affected by genetic, agronomic and environmental factors. J Food Agric Environ 10(3&4):680–688Google Scholar
  47. Sarrou E, Martens S, Chatzopoulou P (2016) Metabolite profiling and antioxidative activity of Sage (Salvia fruticosa Mill.) under the influence of genotype and harvesting period. Ind Crops Prod 94:240–250Google Scholar
  48. Soteriou GA, Kyriacou MC, Siomos AS, Gerasopoulos D (2014) Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chem 165:282–289Google Scholar
  49. Spiegelman Z, Golan G, Wolf S (2013) Don’t kill the messenger: long-distance trafficking of mRNA molecules. Plant Sci 213:1–8Google Scholar
  50. Taller J, Yagishita N, Hirata Y (1999) Graft-induced variants as a source of novel characteristics in the breeding of pepper (Capsicum annuum L.). Euphytica 108(2):73–78Google Scholar
  51. Tiwari U, Cummins E (2013) Factors influencing levels of phytochemicals in selected fruit and vegetables during pre-and post-harvest food processing operations. Food Res Int 50(2):497–506Google Scholar
  52. Tsaballa A, Athanasiadis C, Pasentsis K, Ganopoulos I, Nianiou-Obeidat I, Tsaftaris A (2012) Molecular studies of inheritable grafting induced changes in pepper (Capsicum annuum) fruit shape. Sci Hortic 149(0):2–8.  https://doi.org/10.1016/j.scienta.2012.06.018 Google Scholar
  53. Tsaftaris AS, Kapazoglou A, Darzentas N (2012) Epigenetics, epigenomics, and implications in plant breeding. In: A. Altman and P.M. Haegawa (eds.) Plant biotechnology and agriculture: prospects for the 21st century. Elsevier PressGoogle Scholar
  54. Uthup TK, Karumamkandathil R, Ravindran M, Saha T (2018) Heterografting induced DNA methylation polymorphisms in Hevea brasiliensis. Planta 248(3):579–589.  https://doi.org/10.1007/s00425-018-2918-6 Google Scholar
  55. Valenzuela GM, Soro AS, Tauguinas AL, Gruszycki MR, Cravzov AL, Giménez MC, Wirth A (2014) Evaluation polyphenol content and antioxidant activity in extracts of Cucurbita spp. Open Access Libr J 1(03):1Google Scholar
  56. Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3(1):12Google Scholar
  57. Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11(1):139–151Google Scholar
  58. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414Google Scholar
  59. Vrhovsek U, Masuero D, Gasperotti M, Franceschi P, Caputi L, Viola R, Mattivi F (2012) A versatile targeted metabolomics method for the rapid quantification of multiple classes of phenolics in fruits and beverages. J Agric Food Chem 60(36):8831–8840Google Scholar
  60. Wang L, Mai Y-X, Zhang Y-C, Luo Q, Yang H-Q (2010) MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Mol Plant 3(5):794–806Google Scholar
  61. Wu R, Wang X, Lin Y, Ma Y, Liu G, Yu X, Zhong S, Liu B (2013) Inter-species grafting caused extensive and heritable alterations of DNA methylation in Solanaceae plants. PLoS ONE 8(4):e61995Google Scholar
  62. Xanthopoulou A, Ganopoulos I, Kalivas A, Nianiou-Obeidat I, Ralli P, Moysiadis T, Tsaftaris A, Madesis P (2015) Comparative analysis of genetic diversity in Greek Genebank collection of summer squash (Cucurbita pepo) landraces using start codon targeted (SCoT) polymorphism and ISSR markers. Aust J Crop Sci 9(1):14Google Scholar
  63. Yagishita N, Hirata Y (1987) Graft-induced change in fruit shape in Capsicum annuum LI genetic analysis by crossing. Euphytica 36(3):809–814Google Scholar
  64. Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66(7):1749–1761Google Scholar
  65. Zhong S, Fei Z, Chen Y-R, Zheng Y, Huang M, Vrebalov J, McQuinn R, Gapper N, Liu B, Xiang J, Shao Y, Giovannoni JJ (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotech 31(2):154–159Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Aliki Xanthopoulou
    • 1
  • Aphrodite Tsaballa
    • 2
  • Ioannis Ganopoulos
    • 2
  • Aliki Kapazoglou
    • 3
  • Evangelia Avramidou
    • 4
  • Filippos A. Aravanopoulos
    • 4
  • Theodoros Moysiadis
    • 5
  • Maslin Osathanunkul
    • 6
    • 7
  • Athanasios Tsaftaris
    • 1
    • 9
  • Andreas G. Doulis
    • 8
  • Apostolos Kalivas
    • 2
  • Eirini Sarrou
    • 2
  • Stefan Martens
    • 10
  • Irini Nianiou-Obeidat
    • 1
    Email author
  • Panagiotis Madesis
    • 5
    Email author
  1. 1.Department of Genetics and Plant BreedingAristotle University of ThessalonikiThessaloníkiGreece
  2. 2.Institute of Plant Breeding and Genetic ResourcesHellenic Agricultural Organization-DEMETERThermiGreece
  3. 3.Department of Viticulture, Institute of Olive Tree, Subtropical Crops and ViticultureHellenic Agricultural Organization-DEMETERAthensGreece
  4. 4.Laboratory of Forest Genetics and Tree Breeding, Faculty of Forestry and Natural EnvironmentAristotle University of ThessalonikiThessaloníkiGreece
  5. 5.Institute of Applied BiosciencesCERTHThermi, ThessaloníkiGreece
  6. 6.Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  7. 7.Center of Excellence in Bioresources for Agriculture, Industry and MedicineChiang Mai UniversityChiang MaiThailand
  8. 8.Hellenic Agricultural Organization-DEMETER, Institute of Olive TreeSubtropical Crops and ViticultureHeraklionGreece
  9. 9.Perrotis College, American Farm SchoolThessaloníkiGreece
  10. 10.Department of Food Quality and Nutrition DepartmentIASMA Research and Innovation Centre, Fondazione Edmund Mach (FEM)San Michele all’ AdigeItaly

Personalised recommendations