Plant Growth Regulation

, Volume 87, Issue 1, pp 19–27 | Cite as

Functional analysis for domains of maize PPR protein EMP5 in RNA editing and plant development in Arabidopsis

  • Peng Zheng
  • Qiang He
  • Xiaomin Wang
  • Jumin Tu
  • Jianhua Zhang
  • Yu-Jun LiuEmail author
Original paper


EMP5 and OTP72 are PPR proteins involved in mitochondrial same site RNA editing of rpl16 in maize and Arabidopsis, respectively. Besides rpl16, EMP5 also affects the editing efficiency of some editing sites in other mitochondrial transcripts. Loss of function of EMP5 causes arrested embryogenesis and endosperm development in maize, but no discernable defective phenotype is observed in Arabidopsis otp72 mutant plants. We here report that EMP5 can completely complement Arabidopsis otp72 for Ararpl16-440 editing, and E domain can’t be disrupted for normal function of EMP5. An interesting finding was that overexpression of a set of truncated EMP5s in Col-0 resulted in delayed bolting phenotypes and smaller plants. It seems some truncated EMP5s, such as EMP5-C and EMP5-D, have yet unknown functions, are not responsible for Ararpl16-440 editing any more. The phylogenetic analysis indicated that the functions of most EMP5 orthologs may be conserved, but EMP5 ortholog proteins from Nicotiana and Solanum can’t be found, and the C to U editing of Zmrpl16-458 site was not needed any more in the two species. Therefore, these two primary orthologs maybe already evolve new functions and change to different new proteins during evolutionary history. Overall, our studies revealed that E domain is crucial for mitochondrial RNA editing function of EMP5, and a set of truncated EMP5s still have functions for Arabidopsis normal growth and development, providing new insights into investigating the functions of EMP5 protein.


PPR proteins E domain RNA editing Maize Arabidopsis 



We thank Tsuyoshi Nakagawa (Shimane University, Japan) for the pGWB vectors. This work was supported by funds from the National Natural Science Foundation of China (Project No. 31501375) and China Postdoctoral Science Foundation Funded Project (Project No. 2016M590542).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10725_2018_447_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (PDF 2113 KB)


  1. Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442CrossRefGoogle Scholar
  2. Bentolila S, Heller WP, Sun T, Babina AM, Friso G, van Wijk KJ, Hanson MR (2012) RIP1, a member of an Arabidopsis protein family, interacts with the protein RARE1 and broadly affects RNA editing. Proc Natl Acad Sci USA 109:E1453–E1461CrossRefGoogle Scholar
  3. Boussardon C, Avon A, Kindgren P, Bond CS, Challenor M, Lurin C, Small I (2014) The cytidine deaminase signature HxE(x)(n)CxxC of DYW1 binds zinc and is necessary for RNA editing of ndhD-1. New Phytol 203:1090–1095CrossRefGoogle Scholar
  4. Chateigner-Boutin AL, Small I (2010) Plant RNA editing. RNA Biol 7:213–219CrossRefGoogle Scholar
  5. Chateigner-Boutin AL, Colas des Francs-Small C, Fujii S, Okuda K, Tanz SK, Small I (2013) The E domains of pentatricopeptide repeat proteins from different organelles are not functionally equivalent for RNA editing. Plant J 74:935–945CrossRefGoogle Scholar
  6. Cheng SF, Gutmann B, Zhong X, Ye YT, Fisher MF, Bai FQ, Castleden I, Song Y, Song B, Huang JY, Liu X, Xu X, Lim BL, Bond CS, Yiu SM, Small I (2016) Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants. Plant J 85:532–547CrossRefGoogle Scholar
  7. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefGoogle Scholar
  8. de Longevialle AF, Meyer EH, Andres C, Taylor NL, Lurin C, Millar AH, Small ID (2007) The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 intron 1 in Arabidopsis thaliana. Plant Cell 19:3256–3265CrossRefGoogle Scholar
  9. Fujii S, Small I (2011) The evolution of RNA editing and pentatricopeptide repeat genes. New Phytol 191:37–47CrossRefGoogle Scholar
  10. Giege P, Brennicke A (1999) RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc Natl Acad Sci USA 96:15324–15329CrossRefGoogle Scholar
  11. Glass F, Hartel B, Zehrmann A, Verbitskiy D, Takenaka M (2015) MEF13 requires MORF3 and MORF8 for RNA editing at eight targets in mitochondrial mRNAs in Arabidopsis thaliana. Mol Plant 8:1466–1477CrossRefGoogle Scholar
  12. Gomez-Casati DF, Busi MV, Gonzalez-Schain N, Mouras A, Zabaleta EJ, Araya A (2002) A mitochondrial dysfunction induces the expression of nuclear-encoded complex I genes in engineered male sterile Arabidopsis thaliana. FEBS Lett 532:70–74CrossRefGoogle Scholar
  13. Gray MW, Burger G, Lang BF (2001) The origin and early evolution of mitochondria. Genome Biol 2:REVIEWS1018CrossRefGoogle Scholar
  14. Grennan AK (2011) To thy proteins be true: RNA editing in plants. Plant Physiol 156:453–454CrossRefGoogle Scholar
  15. Haag S, Schindler M, Berndt L, Brennicke A, Takenaka M, Weber G (2017) Crystal structures of the Arabidopsis thaliana organellar RNA editing factors MORF1 and MORF9. Nucleic Acids Res 45:4915–4928CrossRefGoogle Scholar
  16. Jia F, Wan X, Zhu W, Sun D, Zheng C, Liu P, Huang J (2015) Overexpression of mitochondrial phosphate transporter 3 severely hampers plant development through regulating mitochondrial function in Arabidopsis. PLoS ONE 10:e0129717CrossRefGoogle Scholar
  17. Kuhn K, Carrie C, Giraud E, Wang Y, Meyer EH, Narsai R, des Francs-Small CC, Zhang B, Murcha MW, Whelan J (2011) The RCC1 family protein RUG3 is required for splicing of nad2 and complex I biogenesis in mitochondria of Arabidopsis thaliana. Plant J 67:1067–1080CrossRefGoogle Scholar
  18. Kuhn K, Obata T, Feher K, Bock R, Fernie AR, Meyer EH (2015) Complete mitochondrial complex I deficiency induces an up-regulation of respiratory fluxes that is abolished by traces of functional complex I. Plant physiol 168:1537–1549CrossRefGoogle Scholar
  19. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  20. Li LG, Sokolov LN, Yang YH, Li DP, Ting J, Pandy GK, Luan S (2008) A mitochondrial magnesium transporter functions in Arabidopsis pollen development. Mol Plant 1:675–685CrossRefGoogle Scholar
  21. Liu ZC, Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40:159–185CrossRefGoogle Scholar
  22. Liu YJ, Xiu ZH, Meeley R, Tan BC (2013) Empty pericarp5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize. Plant Cell 25:868–883CrossRefGoogle Scholar
  23. Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103CrossRefGoogle Scholar
  24. Marechal A, Parent JS, Sabar M, Veronneau-Lafortune F, Abou-Rached C, Brisson N (2008) Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function. BMC Plant Biol 8:42CrossRefGoogle Scholar
  25. Meyer EH, Tomaz T, Carroll AJ, Estavillo G, Delannoy E, Tanz SK, Small ID, Pogson BJ, Millar AH (2009) Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses Arabidopsis germination and growth and alters control of metabolism at night. Plant Physiol 151:603–619CrossRefGoogle Scholar
  26. Meyer EH, Solheim C, Tanz SK, Bonnard G, Millar AH (2011) Insights into the composition and assembly of the membrane arm of plant complex I through analysis of subcomplexes in Arabidopsis mutant lines. J Biol Chem 286:26081–26092CrossRefGoogle Scholar
  27. Nakamura T, Sugita M (2008) A conserved DYW domain of the pentatricopeptide repeat protein possesses a novel endoribonuclease activity. FEBS Lett 582:4163–4168CrossRefGoogle Scholar
  28. O’Toole N, Hattori M, Andres C, Iida K, Lurin C, Schmitz-Linneweber C, Sugita M, Small I (2008) On the expansion of the pentatricopeptide repeat gene family in plants. Mol Biol Evol 25:1120–1128CrossRefGoogle Scholar
  29. Okuda K, Myouga F, Motohashi R, Shinozaki K, Shikanai T (2007) Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proc Natl Acad Sci USA 104:8178–8183CrossRefGoogle Scholar
  30. Okuda K, Chateigner-Boutin AL, Nakamura T, Delannoy E, Sugita M, Myouga F, Motohashi R, Shinozaki K, Small I, Shikanai T (2009) Pentatricopeptide repeat proteins with the DYW motif have distinct molecular functions in RNA editing and RNA cleavage in Arabidopsis chloroplasts. Plant Cell 21:146–156CrossRefGoogle Scholar
  31. Okuda K, Hammani K, Tanz SK, Peng L, Fukao Y, Myouga F, Motohashi R, Shinozaki K, Small I, Shikanai T (2010) The pentatricopeptide repeat protein OTP82 is required for RNA editing of plastid ndhB and ndhG transcripts. Plant J 61:339–349CrossRefGoogle Scholar
  32. Ramos-Vega M, Guevara-Garcia A, Llamas E, Sanchez-Leon N, Olmedo-Monfil V, Vielle-Calzada JP, Leon P (2015) Functional analysis of the Arabidopsis thaliana CHLOROPLAST BIOGENESIS 19 pentatricopeptide repeat editing protein. New Phytol 208:430–441CrossRefGoogle Scholar
  33. Salone V, Rudinger M, Polsakiewicz M, Hoffmann B, Groth-Malonek M, Szurek B, Small I, Knoop V, Lurin C (2007) A hypothesis on the identification of the editing enzyme in plant organelles. FEBS Lett 581:4132–4138CrossRefGoogle Scholar
  34. Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670CrossRefGoogle Scholar
  35. Shikanai T (2006) RNA editing in plant organelles: machinery, physiological function and evolution. Cell Mol Life Sci 63:698–708CrossRefGoogle Scholar
  36. Takenaka M (2010) MEF9, an E-subclass pentatricopeptide repeat protein, is required for an RNA editing event in the nad7 transcript in mitochondria of Arabidopsis. Plant Physiol 152:939–947CrossRefGoogle Scholar
  37. Takenaka M, Zehrmann A, Verbitskiy D, Kugelmann M, Hartel B, Brennicke A (2012) Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants. Proc Natl Acad Sci USA 109:10606–10606CrossRefGoogle Scholar
  38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  39. Verbitskiy D, van der Merwe JA, Zehrmann A, Hartel B, Takenaka M (2012) The E-class PPR protein MEF3 of Arabidopsis thaliana can also function in mitochondrial RNA editing with an additional DYW domain. Plant Cell Physiol 53:358–367CrossRefGoogle Scholar
  40. Wagoner JA, Sun T, Lin L, Hanson MR (2015) Cytidine deaminase motifs within the DYW domain of two pentatricopeptide repeat-containing proteins are required for site-specific chloroplast RNA editing. J Biol Chem 290:2957–2968CrossRefGoogle Scholar
  41. Wang XM, Chang N, Bi YR, Tan BC (2015) Measurement of mitochondrial respiration rate in maize (Zea mays) leaves. Bio Protoc 5(10):e1483CrossRefGoogle Scholar
  42. Wang Y, Yan J, Zhang Q, Ma X, Zhang J, Su M, Wang X, Huang Y (2017) The Schizosaccharomyces pombe PPR protein Ppr10 associates with a novel protein Mpa1 and acts as a mitochondrial translational activator. Nucleic Acids Res 45:3323–3340CrossRefGoogle Scholar
  43. Wu W, Liu S, Ruwe H, Zhang D, Melonek J, Zhu Y, Hu X, Gusewski S, Yin P, Small ID, Howell KA, Huang J (2016) SOT1, a pentatricopeptide repeat protein with a small MutS-related domain, is required for correct processing of plastid 23S-4.5S rRNA precursors in Arabidopsis thaliana. Plant J 85:607–621CrossRefGoogle Scholar
  44. Xiao H, Zhang Q, Qin X, Xu Y, Ni C, Huang J, Zhu L, Zhong F, Liu W, Yao G, Zhu Y, Hu J (2018) Rice PPS1 encodes a DYW motif-containing pentatricopeptide repeat protein required for five consecutive RNA-editing sites of nad3 in mitochondria. New Phytol. Google Scholar
  45. Xin B, Tao F, Wang Y, Liu H, Ma C, Xu P (2017) Coordination of metabolic pathways: enhanced carbon conservation in 1,3-propanediol production by coupling with optically pure lactate biosynthesis. Metab Eng 41:102–114CrossRefGoogle Scholar
  46. Xiu ZH, Sun F, Shen Y, Zhang XY, Jiang RC, Bonnard G, Zhang JH, Tan BC (2016) EMPTY PERICARP16 is required for mitochondrial nad2 intron 4 cis-splicing, complex I assembly and seed development in maize. Plant J 85:507–519CrossRefGoogle Scholar
  47. Yang YZ, Ding S, Wang HC, Sun F, Huang WL, Song S, Xu C, Tan BC (2017) The pentatricopeptide repeat protein EMP9 is required for mitochondrial ccmB and rps4 transcript editing, mitochondrial complex biogenesis and seed development in maize. New Phytol 214:782–795CrossRefGoogle Scholar
  48. Zehrmann A, Verbitskiy D, van der Merwe JA, Brennicke A, Takenaka M (2009) A DYW domain-containing pentatricopeptide repeat protein is required for RNA editing at multiple sites in mitochondria of Arabidopsis thaliana. Plant Cell 21:558–567CrossRefGoogle Scholar
  49. Zhang YF, Suzuki M, Sun F, Tan BC (2017) The mitochondrion-targeted PENTATRICOPEPTIDE REPEAT78 protein is required for nad5 mature mRNA stability and seed development in maize. Mol Plant 10:1321–1333CrossRefGoogle Scholar
  50. Zoschke R, Watkins KP, Miranda RG, Barkan A (2016) The PPR-SMR protein PPR53 enhances the stability and translation of specific chloroplast RNAs in maize. Plant J 85:594–606CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Peng Zheng
    • 1
  • Qiang He
    • 3
  • Xiaomin Wang
    • 3
  • Jumin Tu
    • 1
  • Jianhua Zhang
    • 2
  • Yu-Jun Liu
    • 1
    Email author
  1. 1.Institute of Crop Science, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.State Key Lab of Agrobiotechnology, School of Life ScienceThe Chinese University of Hong KongShatin, New TerritoriesPeople’s Republic of China
  3. 3.School of Life SciencesLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations