Plant Growth Regulation

, Volume 86, Issue 2, pp 181–194 | Cite as

Exogenously applied salicylic acid maintains redox homeostasis in salt-stressed Arabidopsis gr1 mutants expressing cytosolic roGFP1

  • Jolán CsiszárEmail author
  • Szilvia Brunner
  • Edit Horváth
  • Krisztina Bela
  • Petra Ködmön
  • Riyazuddin Riyazuddin
  • Ágnes Gallé
  • Ágnes Hurton
  • Csaba Papdi
  • László Szabados
  • Irma Tari
Original paper


Exogenous salicylic acid (SA) can be used for chemical hardening to alleviate oxidative stress in plants exposed to salinity. The treatment of 5-week-old Arabidopsis thaliana plants with increasing doses of SA alters the ascorbate (ASC) and glutathione (GSH) pools, and modulates their redox status and the activity of several antioxidant enzymes, such as ascorbate peroxidase (APX) and glutathione reductase (GR). To investigate the role of GR in the maintenance of cytoplasmic redox homeostasis after hardening by SA, wild type (WT) and gr1 mutant plants, expressing the cytoplasmic redox-sensitive green fluorescent protein (c-roGFP1), were pre-treated with 10−7 and 10−5 M SA for 2 weeks and subsequently exposed to 100 mM NaCl. The redox status of the salt-stressed WT plants became more oxidized, which was prevented by pretreatment with 10−5 M SA. The gr1 mutants showed more positive redox potential than WT plants, which could be reversed by treatment with 10−5 M SA. In mutants, the increased GSH levels may have compensated for the deleterious effect of GR deficiency and stabilized the redox potential in plants exposed to salinity. The ASC regeneration in WT plants shifted from the GSH-dependent dehydroascorbate reductase (DHAR) reaction to the NAD(P)H-dependent monodehydroascorbate reductase (MDHAR) activity during chemical hardening, which contributed to the preservation of the GSH pool in plants under salt stress. Our results suggest that the maintenance of GSH levels and redox homeostasis by SA-mediated hardening play a major role in priming and defending against salt stress.


Ascorbate–glutathione pool Glutathione reductase Redox homeostasis Redox-sensitive GFP1 Salt stress 



Ascorbate peroxidase




Cytoplasmic redox-sensitive green fluorescent protein


Dehydroascorbate reductase


Glutathione reduction potential


Reduction potential of roGFP1


Glutathione reductase


Glutathione reductase1 mutant


Reduced glutathione


Glutathione disulphide, oxidized glutathione


Monodehydroascorbate reductase


Non-expressor of pathogenesis-related genes1


Reactive oxygen species


Salicylic acid




Wild type



We would like to thank Dr. M. Schwarzländer for the c-roGFP1-harbouring Arabidopsis seeds. This study was supported by the Hungarian National Research, Development and Innovation Office [Grant Numbers: OTKA K 105956 and NKFI-1 PD 121027] and by the Hungary-Serbia IPA Cross-border Co-operation Programme [HUSRB/1203/221/173].

Supplementary material

10725_2018_420_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 KB)


  1. Aller I, Rouhier N, Meyer AJ (2013) Development of roGFP2-derived redox probes for measurement of the glutathione redox potential in the cytosol of severely glutathione-deficient rml1 seedlings. Front Plant Sci 4:506CrossRefPubMedPubMedCentralGoogle Scholar
  2. Antoniou C, Savvides A, Christou A, Fotopoulos V (2016) Unravelling chemical priming machinery in plants: the role of reactive oxygen-nitrogen-sulfur species in abiotic stress tolerance enhancement. Curr Opin Plant Biol 33:101–107CrossRefPubMedGoogle Scholar
  3. Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240CrossRefGoogle Scholar
  4. Beckers GJ, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10:425–431CrossRefPubMedGoogle Scholar
  5. Begara-Morales JC, Sanchez-Calvo B, Chaki M, Mata-Perez C, Valderrama R, Padilla MN, Lopez-Jaramillo J, Luque F, Corpas FJ, Barroso JB (2015) Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. J Exp Bot 66:5983–5996CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boguszewska D, Zagdańska B (2012) ROS as signaling molecules and enzymes of plant response to unfavorable environmental conditions. In: Lushchak V (ed) Oxidative stress—molecular mechanisms and biological effects, InTech, Rijeka, pp 341–362,, ISBN: 978-953-51-0554-1Google Scholar
  7. Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162CrossRefPubMedPubMedCentralGoogle Scholar
  8. Couturier J, Chibani K, Jacquot JP, Rouhier N (2013) Cysteine-based redox regulation and signaling in plants. Front Plant Sci 4:105PubMedCentralPubMedGoogle Scholar
  9. Csiszár J, Horváth E, Váry Z, Gallé Á, Bela K, Brunner Sz, Tari I (2014) Glutathione transferase supergene family in tomato: salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem 78:15–26CrossRefGoogle Scholar
  10. D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824CrossRefPubMedGoogle Scholar
  11. Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795CrossRefPubMedGoogle Scholar
  12. Delorme-Hinoux V, Bangash SAK, Meyer AJ, Reichheld JP (2016) Nuclear thiol redox systems in plants. Plant Sci 243:84–95CrossRefPubMedGoogle Scholar
  13. Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH (2015) Glutathione—linking cell proliferation to oxidative stress. Free Radic Biol Med 89:1154–1164CrossRefPubMedGoogle Scholar
  14. Ding SH, Lu QT, Zhang Y, Yang ZP, Wen XG, Zhang LX, Lu CM (2009) Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol Biol 69:577–592CrossRefPubMedGoogle Scholar
  15. Dixon DP, Davis BG, Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants—identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277:30859–30869CrossRefPubMedGoogle Scholar
  16. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875CrossRefPubMedPubMedCentralGoogle Scholar
  17. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18CrossRefPubMedPubMedCentralGoogle Scholar
  18. Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what’s in pROSpect? Plant Cell Environ 39:951–964CrossRefPubMedGoogle Scholar
  19. Gémes K, Poór P, Horváth E, Kolbert Zs, Szopkó D, Szepesi Á, Tari I (2011) Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol Plant 142:179–192CrossRefPubMedGoogle Scholar
  20. Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212CrossRefPubMedGoogle Scholar
  21. Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor GD (2013) Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal 18:2106–2121CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053CrossRefPubMedGoogle Scholar
  23. Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25CrossRefGoogle Scholar
  24. Hicks LM, Cahoon RE, Bonner ER, Rivard RS, Sheffield J, Jez JM (2007) Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. Plant Cell 19:2653–2661CrossRefPubMedPubMedCentralGoogle Scholar
  25. Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26(3):290–300CrossRefGoogle Scholar
  26. Horváth E, Brunner Sz, Bela K, Papdi Cs, Szabados L, Tari I, Csiszár J (2015) Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of Arabidopsis thaliana. Funct Plant Biol 42:1129–1140Google Scholar
  27. Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395Google Scholar
  28. Janda T, Szalai G, Tari I, Páldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208:175–180CrossRefGoogle Scholar
  29. Jiang K, Schwarzer C, Lally E, Zhang S, Ruzin S, Machen T, Remington SJ, Feldman L (2006) Expression and characterization of a redox-sensing green fluorescent protein (reduction-oxidation-sensitive green fluorescent protein) in Arabidopsis. Plant Physiol 141:397–403CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jiang K, Moe-Lange J, Hennet L, Feldman LJ (2016) Salt stress affects the redox status of Arabidopsis root meristems. Front Plant Sci 7:81PubMedCentralPubMedGoogle Scholar
  31. Jimenez A, Hernandez JA, del Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ma LH, Takanishi CL, Wood MJ (2007) Molecular mechanism of oxidative stress perception by the Orp1 protein. J Biol Chem 282:31429–31436CrossRefPubMedGoogle Scholar
  33. Marty L, Siala W, Schwarzländer M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y, Meyer AJ, Reichheld JP, Hell R (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci USA 106:9109–9114CrossRefPubMedGoogle Scholar
  34. Meyer AJ, Dick TP (2010) Fluorescent protein-based redox probes. Antioxid Redox Signal 13:621–650CrossRefPubMedGoogle Scholar
  35. Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986CrossRefPubMedGoogle Scholar
  36. Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou JP, Noctor G (2010) Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153:1144–1160CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944CrossRefGoogle Scholar
  38. Munné-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161:5–19CrossRefPubMedGoogle Scholar
  39. Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts: its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28:131–140Google Scholar
  40. Noctor G (2006) Metabolic signalling in defence and stress: the ecentral roles pof soluble redox couples. Plant Cell Environ 29:409–425CrossRefPubMedGoogle Scholar
  41. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279CrossRefPubMedGoogle Scholar
  42. Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione. Arabidopsis Book, 9:1–32CrossRefGoogle Scholar
  43. Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484CrossRefPubMedGoogle Scholar
  44. Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231CrossRefPubMedGoogle Scholar
  45. Potters G, Horemans N, Jansen MAK (2010) The cellular redox state in plant stress biology – A charging concept. Plant Physiol Bioch 48(5):292–300. CrossRefGoogle Scholar
  46. Rao AC, Reddy AR (2008) Glutathione reductase: a putative redox regulatory system in plant cells. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer, Heidelberg, pp 111–147CrossRefGoogle Scholar
  47. Rosenwasser S, Rot I, Meyer AJ, Feldman L, Jiang K, Friedman H (2010) A fluorometer-based method for monitoring oxidation of redox-sensitive GFP (roGFP) during development and extended dark stress. Physiol Plant 138:493–502CrossRefPubMedGoogle Scholar
  48. Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci 21:329–340CrossRefPubMedGoogle Scholar
  49. Schnaubelt D, Queval G, Dong Y, Diaz-Vivancos P, Makgopa ME, Howell G, De Simone A, Bai J, Hannah MA, Foyer CH (2015) Low glutathione regulates gene expression and the redox potentials of the nucleus and cytosol in Arabidopsis thaliana. Plant Cell Environ 38:266–279CrossRefPubMedGoogle Scholar
  50. Schwarzländer M, Fricker MD, Müller C, Marty L, Brach T, Novak J, Sweetlove LJ, Hell R, Meyer AJ (2008) Confocal imaging of glutathione redox potential in living plant cells. J Microsc 231:299–316CrossRefPubMedGoogle Scholar
  51. Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52:2207–2211CrossRefPubMedGoogle Scholar
  52. Shirasu K, Nakajima H, Rajashekar K, Dixon RA, Lamb C (1997) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signal in the activation of defense mechanisms. Plant Cell 9:261–270CrossRefPubMedPubMedCentralGoogle Scholar
  53. Shu DF, Wang LY, Duan M, Deng YS, Meng QW (2011) Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress. Plant Physiol Biochem 49:1228–1237CrossRefPubMedGoogle Scholar
  54. Spadaro D, Yun BW, Spoel SH, Chu C, Wang YQ, Loake GJ (2010) The redox switch: dynamic regulation of protein function by cysteine modifications. Physiol Plant 138:360–371CrossRefPubMedGoogle Scholar
  55. Szepesi Á, Csiszár J, Gallé Á, Gémes K, Poór P, Tari I (2008) Effects of long-term salicylic acid pre-treatment on tomato (Lycopersicon esculentum Mill. L.) salt stress tolerance: changes in glutathione S-transferase activities and anthocyanin contents. Acta Agron Hung 56:129–138CrossRefGoogle Scholar
  56. Szepesi Á, Csiszár J, Gémes K, Horváth E, Horváth F, Simon ML, Tari I (2009) Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J Plant Physiol 166:914–925CrossRefPubMedGoogle Scholar
  57. Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou ZL, Song JQ, Wang C, Zuo JR, Dong XN (2008) Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956CrossRefGoogle Scholar
  58. Tanou G, Filippou P, Belghazi M, Job D, Diamantidis G, Fotopoulos V, Molassiotis A (2012) Oxidative and nitrosative-based signaling and associatedpost-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J 72:585–599CrossRefPubMedGoogle Scholar
  59. Tari I, Csiszár J, Szalai G, Horváth F, Pécsváradi A, Kiss G, Szepesi Á, Szabó M, Erdei L (2002) Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatment. Acta Biol Szeged 46:55–56Google Scholar
  60. Tari I, Csiszár J, Horváth E, Poór P, Takács Z, Szepesi Á (2015) Alleviation of the adverse effect of salt stress in tomato by salicylic acid shows time- and organ-specific antioxidant response. Acta Biol Crac Bot 57:1–10Google Scholar
  61. Tsai YC, Hong CY, Liu LF, Kao CH (2005) Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. J Plant Physiol 162:291–299CrossRefPubMedGoogle Scholar
  62. Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220CrossRefPubMedPubMedCentralGoogle Scholar
  63. Waszczak C, Akter S, Eeckhout D, Persiau G, Wahni K, Bodra N, Van Molle I, De Smet B, Vertommen D, Gevaert K, De Jaeger G, Van Montagu M, Messens J, Van Breusegem F (2014) Sulfenome mining in Arabidopsis thaliana. Proc Natl Acad Sci USA 111:11545–11550CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Jolán Csiszár
    • 1
    Email author
  • Szilvia Brunner
    • 1
  • Edit Horváth
    • 1
  • Krisztina Bela
    • 1
  • Petra Ködmön
    • 1
  • Riyazuddin Riyazuddin
    • 1
  • Ágnes Gallé
    • 1
  • Ágnes Hurton
    • 1
  • Csaba Papdi
    • 2
  • László Szabados
    • 2
  • Irma Tari
    • 1
  1. 1.Department of Plant Biology, Faculty of SciencesUniversity of SzegedSzegedHungary
  2. 2.Institute of Plant BiologyBiological Research Centre of HASSzegedHungary

Personalised recommendations