Variation over time in morphological phenotypes and reproductive behavior in a natural wild potato population from Tucumán, Argentina

  • Gabriela Agustina Leofanti
  • Elsa Lucila CamadroEmail author
  • Luis Ernesto Erazzú
Research Article


The common potato, Solanum tuberosum ssp. tuberosum (tbr, 2n = 4x = 48, 4EBN), has a large number of wild relatives (known as “wild potatoes”) with wide geographic and ecological distribution in the Americas. They form a polyploid series with 2n = 2x to 6x (x = 12), have scarce chromosome differentiation, and can reproduce both sexually (by seeds) and asexually (by tubers and stolons). In nature, wild potatoes can be isolated by external and/or internal hybridization barriers; when incomplete, internal barriers allow for gene flow and introgression between sympatric populations. To develop appropriate strategies to in situ maintain the available genetic diversity and to capture a large part of this diversity for ex situ conservation, it is of utmost importance to understand the reproductive behavior of wild potatoes in their natural environments, and to explore possible over time changes. Information in this regard is lacking. Thus, an integrated analysis of morphological phenotypes and breeding relationships was carried out in a natural population from Tucumán province, Argentina. This population was sampled in two consecutive years following a field design and, ex situ, controlled crosses were carried out between plants derived from the sampled propagules. High morphological variability and absence of relationships between morphological phenotypes and breeding behavior was observed, in addition to changes in the predominant mode of reproduction (either sexual or asexual) over time. These results highlight the necessity of resampling wild potato populations and of applying the gene reservoir concept in natural populations -irrespective of individual plant morphological phenotypes- for both conservation and use of their genetic diversity.


Mode of reproduction Genetic diversity Breeding behavior Germplasm conservation 



This study was funded by Instituto Nacional de Tecnología Agropecuaria -INTA-, Universidad Nacional de Mar del Plata -UNMdP- (AGR 344/11) and Consejo Nacional de Investigaciones Científicas y Técnicas -CONICET- (PIP 2012-2014 GI).

Compliance with ethical standards

Conflict of interest

Authors Gabriela Agustina Leofanti, Elsa Lucila Camadro and Luis Ernesto Erazzú declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10722_2019_858_MOESM1_ESM.pdf (235 kb)
Supplementary material 1 (PDF 234 kb)
10722_2019_858_MOESM2_ESM.pdf (472 kb)
Supplementary material 2 (PDF 472 kb)
10722_2019_858_MOESM3_ESM.pdf (117 kb)
Supplementary material 3 (PDF 127 kb)
10722_2019_858_MOESM4_ESM.pdf (111 kb)
Supplementary material 4 (PDF 111 kb)
10722_2019_858_MOESM5_ESM.pdf (128 kb)
Supplementary material 5 (PDF 128 kb)


  1. Abdalla MMF, Hermsen JG (1972) Plasmons and male sterility types in Solanum verrucosum and its interspecific hybrid derivatives. Euphytica 21(2):209–220CrossRefGoogle Scholar
  2. Anton AM, Zuloaga FO, Rúgolo Z (2012) Flora Argentina. Flora Vascular de la República Argentina 3 (1): Monocotiledoneae: Poaceae: Aristidoideae-Pharoideae. Gráficamente Ediciones, CórdobaGoogle Scholar
  3. Balzarini MG, Di Rienzo JA (2014) InfoGen 2014. FCA, Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  4. Bedonni MC, Camadro EL (2009) Morphological and molecular evidence of natural interspecific hybridization in the diploid potato Solanum kurtzianum from Argentina. Botany 87:78–87CrossRefGoogle Scholar
  5. Bianchi AR, Cravero SC (2010) Atlas climático digital de la República Argentina. Instituto Nacional de Tecnología Agropecuaria: Salta, Argentina. Accessed 23 January 2019
  6. Brücher H (1953) On the natural occurrence of hybrids of Solanum simplicifolium and S. subtilius in the Aconquija range. Z Indukt Abstamm Vererbungsl 85:12–19PubMedPubMedCentralGoogle Scholar
  7. Burkart A (1943) Las leguminosas Argentinas silvestres y cultivadas. Acme, Buenos AiresGoogle Scholar
  8. Burkart A, Bacigalupo N (2005) Flora Ilustrada de Entre Ríos (Argentina). Parte IV: Dicotiledoneas Arquiclamídeas, B: Geraniales a Umbelliflorales. Colección Científica del INTA, Tomo VI. Buenos AiresGoogle Scholar
  9. Cabrera AL (1963) Compuestas. Flora de la Provincia de Buenos Aires. Colección Científica Instituto Nacional de Tecnología Agropecuaria. Tomo 4 (6). Instituto Nacional de Tecnología Agropecuaria, Buenos AiresGoogle Scholar
  10. Cabrera AL (1965) Ericáceas a Caliceráceas. Flora de la Provincia de Buenos Aires. Colección Científica Instituto Nacional de Tecnología Agropecuaria. Tomo 4 (5). Instituto Nacional de Tecnología Agropecuaria, Buenos AiresGoogle Scholar
  11. Cabrera A (1976) Regiones fitogeográficas argentinas. In: Kugler WF (ed) Enciclopedia argentina de agricultura y jardinería. Tomo 2., 2a edn. Acme, Buenos AiresGoogle Scholar
  12. Cabrera AL (1983) Flora de la Provincia de Jujuy. República Argentina. Parte VIII- Clethráceas a Solanáceas. Colección Científica del INTA, Buenos AiresGoogle Scholar
  13. Camadro EL (1986) Los gametos 2n en el origen y la evolución de las Angiospermas poliploides. Mendeliana 7(2):85–100Google Scholar
  14. Camadro EL (2011) Hibridación y flujo génico en especies silvestres de papa de la Argentina. J Basic Appl Genet 22(1):1–5Google Scholar
  15. Camadro EL (2012) Relevance of the genetic structure of natural populations, and sampling and classification approaches for conservation and use of wild crop relatives: potato as an example. Botany 90(11):1065–1072CrossRefGoogle Scholar
  16. Camadro EL, Peloquin SJ (1980) The ocurrence and frequency of 2n pollen in three diploid Solanums from northwest Argentina. Theor Appl Genet 56:11–15PubMedCrossRefPubMedCentralGoogle Scholar
  17. Camadro EL, Peloquin SJ (1981) Cross-incompatibility between two sympatric polyploid Solanum species. Theor Appl Genet 60:65–70PubMedCrossRefPubMedCentralGoogle Scholar
  18. Camadro EL, Carputo D, Peloquin SJ (2004) Substitutes for genome differentiation in tuber-bearing Solanum: interspecific pollen–pistil incompatibility, nuclear-cytoplasmic male sterility, and endosperm. Theor Appl Genet 109:1369–1376PubMedCrossRefPubMedCentralGoogle Scholar
  19. Camadro EL, Erazzú LE, Maune JF, Bedogni MC (2012) A genetic approach to the species problem in wild potatoes. Plant Biol 14:543–554PubMedCrossRefPubMedCentralGoogle Scholar
  20. Capurro MA, Camadro EL, Masuelli RW (2014) Gene flow between potato cultivars under experimental field conditions in Argentina. Potato Res 57(2):111–122CrossRefGoogle Scholar
  21. Cara N, Marfil CF, Masuelli RW (2013) Epigenetic patterns newly established after interspecific hybridization in natural populations of Solanum. Ecol Evol 3(11):3764–3779PubMedPubMedCentralCrossRefGoogle Scholar
  22. Carputo D, Frusciante L, Peloquin SJ (2003) The role of 2n gametes and endosperm balance number in the origin and evolution of polyploids in the tuber-bearing Solanums. Genetics 163:287–294PubMedPubMedCentralGoogle Scholar
  23. Castellanos A (1957) Revisión de las cactáceas argentinas. Revista de la Facultad de Ciencias Agrarias 6(2):1–29Google Scholar
  24. Correll DS (1962) The potato and its wild relatives. Texas Research Foundation, RennerGoogle Scholar
  25. Crisci JV, Armengol MFL (1983) Introducción a la teoría y práctica de la taxonomía numérica. OEA, WashingtonGoogle Scholar
  26. de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  27. den Nijs TPM, Peloquin SJ (1977) 2n gametes in potato species and their function in sexual polyploidization. Euphytica 26:585–600CrossRefGoogle Scholar
  28. Dietrich W (1977) The South American species of Oenothera sect. Oenothera (Raimannia, Renneria; Onagraceae). Ann Mo Bot Gard 64(3):425–626CrossRefGoogle Scholar
  29. Dzidzienyo DK, Bryan GJ, Wilde G, Robbins TP (2016) Allelic diversity of S-RNAse alleles in diploid potato species. Theor Appl Genet 129(10):1985–2001PubMedPubMedCentralCrossRefGoogle Scholar
  30. Erazzú LE, Camadro EL, Clausen AM (1999) Pollen-style compatibility relations in natural populations of the wild diploid potato species Solanum spegazzinii Bitt. Euphytica 105:219–227CrossRefGoogle Scholar
  31. Erazzú LE, Camadro EL, Clausen AM (2009) Persistence over time, overlapping distribution and molecular indications of interspecific hybridization in wild potato populations of Northwest Argentina. Euphytica 168:249–262CrossRefGoogle Scholar
  32. Espinar LA, Novara LJ (2005) Asteraceae, Tribu 3. Astereae. Aportes Botánicos de Salta Serie Flora 7(12):1–118Google Scholar
  33. Ezcurra C (2002) El género Justicia (Acanthaceae) en Sudamérica Austral. Ann Mo Bot Gard 89(2):225–280CrossRefGoogle Scholar
  34. FAO (2017) Voluntary guidelines for the conservation and sustainable use of crop wild relatives and wild food plants. Food and Agriculture Organization of the United Nations, Rome. Accessed 23 January 2019
  35. Flora Argentina (2019) Plantas vasculares de la República Argentina. Accessed 6 March 2019
  36. Gomez SE (2012) Polygalaceae. Aportes Botánicos de Salta, Serie Flora 4(4):1–21Google Scholar
  37. Goyder DJ (2004) An amplified concept of Philibertia Kunth (Apocynaceae: Asclepiadoideae), with a synopsis of the genus. Kew Bull 59(3):415–451CrossRefGoogle Scholar
  38. Grun P, Aubertin M (1966) Cytological expressions of a cytoplasmic male sterility in Solanum. Am J Bot 53(3):295–301CrossRefGoogle Scholar
  39. Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156(1–2):1–13CrossRefGoogle Scholar
  40. Hanneman RE, Peloquin SJ (1981) Genetic-cytoplasmic male sterility in progeny of 4x-2x crosses in cultivated potatoes. Theor Appl Genet 59(1):53–55PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hawkes JG (1963) A revision of the tuber-bearing Solanums, 2nd edn. Scottish plant breeding station records. Pentlandfield, pp 76–181Google Scholar
  42. Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press, LondonGoogle Scholar
  43. Hawkes JG, Hjerting JP (1969) The potatoes of Argentina, Brazil, Paraguay and Uruguay. A biosystematic study. Oxford University Press, OxfordGoogle Scholar
  44. Hilali A, Lauer FI, Veilleux RE (1988) Effect of environment and direction of hybridization on genetic variability in two diploid potato populations. Potato Res 31(2):247–256CrossRefGoogle Scholar
  45. Holm RW (1950) The American species of Sarcostemma R. Br. (Asclepiadaceae). Ann Mo Bot Gard 37(4):477–560CrossRefGoogle Scholar
  46. Ispizúa VN, Camadro EL, Clausen AM (2015) Variation patterns in natural populations of wild potatoes along Quebrada de Inca Cueva, northwestern Argentina. Genet Resour Crop Evol 62:235–253CrossRefGoogle Scholar
  47. Iwanaga M, Ortiz R, Cipar MS, Peloquin SJ (1991) A restorer gene for genetic-cytoplasmic male sterility in cultivated potatoes. Am Potato J 68(1):19–28CrossRefGoogle Scholar
  48. Jansky SH, Dempewolf H, Camadro EL, Simon R, Zimnoch-Guzowska E, Bisognin DA, Bonierbale M (2013) A case for crop wild relative preservation and use in Potato. Crop Sci 53(3):746–754CrossRefGoogle Scholar
  49. Johnston SA, den Nijs TM, Peloquin SJ, Hanneman RE Jr (1980) The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet 57:5–9PubMedCrossRefPubMedCentralGoogle Scholar
  50. Kiesling R, Saravia M, Oakley L, Muruaga N, Metzing D, Novara LJ (2012) Cactaceae. Aportes Botánicos de Salta, Serie Flora 10(7):1–142Google Scholar
  51. Krapovickas A, Tolaba JA (2012) Malvaceae. Aportes Botánicos de Salta, Serie Flora 8(12):1–138Google Scholar
  52. Larrosa FH, Maune JF, Erazzú LE, Camadro EL (2012) Meiotic abnormalities underlying male sterility in wild potato hybrids and spontaneous populations. Plant Biol 14:223–233PubMedPubMedCentralGoogle Scholar
  53. Leofanti GA, Erazzú LE, Camadro EL (2014) Fenotipos morfológicos y producción de semilla en papas silvestres de la provincia de Tucumán. J Basic Appl Genet 25(1):271Google Scholar
  54. Lewis D (1947) Competition and dominance of incompatibility alleles in diploid pollen. Heredity 1(1):85–108CrossRefGoogle Scholar
  55. Livermore JR, Johnstone FE (1940) The effect of chromosome doubling on the crossability of Solanum chacoense, S. jamesii, and S. bulbocastanum with S. tuberosum. Am Potato J 17(7):170–173CrossRefGoogle Scholar
  56. Marfil CF, Camadro EL, Masuelli RW (2009) Phenotypic instability and epigenetic variability in a diploid potato of hybrid origin, Solanum ruiz-lealii. BMC Plant Biol 9:1–16CrossRefGoogle Scholar
  57. Martin FW (1958) Staining and observing pollen tubes in the style by means of fluorescence. Stain Techn 34:125–128CrossRefGoogle Scholar
  58. Masuelli RW, Camadro EL (1997) Crossability relationships among wild potato species with different ploidies and Endosperm Balance Numbers (EBN). Euphytica 94:227–235CrossRefGoogle Scholar
  59. Masuelli RW, Camadro EL, Erazzú LE, Bedogni MC, Marfil CF (2009) Homoploid hybridization in the origin and evolution of wild diploid potato species. Plant Syst Evol 277:143–151CrossRefGoogle Scholar
  60. Maune JF, Camadro EL, Erazzú LE (2018) Cross-incompatibility and self-incompatibility: unrelated phenomena in wild and cultivated potatoes? Botany 96(1):33–45CrossRefGoogle Scholar
  61. Maxted N, Amri A, Castañeda-Alvarez NP, Dias S, Dullo ME, Fielder H, Ford-Lloyd BV, Iriondo JM, Magos Brehm J, Nilsen LB, Thormann I, Vincent H, Kell SP (2016) Joining up the dots: a systematic perspective of crop wild realtive conservation and use. In: Maxted N et al (eds) Enhancing crop genepool use: capturing wild relative and landrace diversity for crop improvement. Cambridge University Press, Cambridge, pp 87–124CrossRefGoogle Scholar
  62. Mok DWS, Peloquin SJ (1975) Three mechanisms of 2n pollen formation in diploid potatoes. Can J Cytol 17:217–225CrossRefGoogle Scholar
  63. Novara LJ (2013) Euphorbiaceae. Aportes Botánicos de Salta, Serie Flora 11(18):1–188Google Scholar
  64. Novara LJ, Gutierrez DG (2012) Asteraceae, Tribu 5. Helianthae. Aportes Botánicos de Salta, Serie Flora 9(6):1–201Google Scholar
  65. Orfila EN, D’Alfonso CO (2012) Convolvulaceae. Aportes Botánicos de Salta, Serie Flora 3(6):1–87Google Scholar
  66. Poulsen Hornum A, Camadro EL (2014) Morphological phenotypes, pollen viability and pollen-pistil relations in three natural populations of the wild potato Solanum chacoense Bitter. J Basic Appl Genet 25(2):16–31Google Scholar
  67. Prina AO (2012) Brassicaceae. Aportes Botánicos de Salta, Serie Flora 3(2):1–81Google Scholar
  68. Pushkarnath P (1942) Studies on sterility in potatoes. 1. The genetics of self- and cross-incompatibilities. Indian J Genet Pl Br 2:11–36Google Scholar
  69. Spooner DM, van den Berg RG (1992) An analysis of recent taxonomic concepts in wild potatoes (Solanum sect. Petota). Genet Resour Crop Evol 39:23–27CrossRefGoogle Scholar
  70. Spooner DM, Ghislain M, Simon R, Jansky SH, Gavrilenko T (2014) Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev 80(4):283–383CrossRefGoogle Scholar
  71. Ugent D (1966) Hybrid weed complexes in Solanum, section Tuberarium. Ph.D. thesis, University of Wisconsin, MadisonGoogle Scholar
  72. Veilleux RE, McHale NA, Lauer FI (1982) 2n gametes in diploid Solanum: frequency and types of spindle abnormalities. Can J Genet Cytol 24(3):301–314CrossRefGoogle Scholar
  73. Watanabe K, Peloquin SJ (1991) The occurrence and frequency of 2n pollen in 2x, 4x, and 6x wild, tuberbearing Solanum species from Mexico, and Central and South America. Theor Appl Genet 82(5):621–626PubMedCrossRefPubMedCentralGoogle Scholar
  74. Weigend M (2007) Systematics of the genus Mentzelia (Loasaceae) in South America. Ann Mo Bot Gard 94(3):655–690CrossRefGoogle Scholar
  75. Zapater MA (2012) Poaceae. Tribu Pappophoreae. Aportes Botánicos de Salta, Serie Flora 4(11):1–14Google Scholar
  76. Zuloaga FO, Belgrano M, Antón AM (2014). Flora Argentina. Flora Vascular de la República Argentina 7 (1): Dicotyledoneae-Asteraceae (Anthemideae a Gnaphalieae). Instituto de Botánica Darwinion, Consejo Nacional de Investigaciones Científicas y Técnicas, CórdobaGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Gabriela Agustina Leofanti
    • 1
  • Elsa Lucila Camadro
    • 1
    • 2
    Email author
  • Luis Ernesto Erazzú
    • 3
    • 4
  1. 1.Unidad Integrada: Facultad de Ciencias Agrarias (FCA), Instituto Nacional de Tecnología Agropecuaria (INTA)Universidad Nacional de Mar del Plata (UNMdP)-Estación Experimental Agropecuaria (EEA) “Domingo R. Pasquale”BalcarceArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)CABAArgentina
  3. 3.EEA Famaillá, INTAFamailláArgentina
  4. 4.Facultad de Agronomía y Zootecnia (FAZ)Universidad Nacional de Tucumán (UNT)San Miguel de TucumánArgentina

Personalised recommendations