Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Genetic diversity assessment among Corema album (L.) D. Don (Ericaceae) genotypes based on ISSR markers and agro-morphological traits

  • 105 Accesses


Corema album (L.) D. Don is the only species of the genus Corema growing naturally on sand dunes throughout the Atlantic coast of the Iberian Peninsula, noted for the white coloured berries and nutritional value. The lack of information on genetic studies of the species is one of the most limitations for the establishment of this species as a new culture. Thus, this study focuses on the assessment of the genetic diversity based on inter-simple sequence repeats (ISSR) molecular markers and morphological traits. Seventy-one female plants, from four different sampled sites, were evaluated using six ISSR loci and eight morphological traits. Fifty polymorphic loci were detected. The dendrogram based on the UPGMA method and the principal coordinate analysis classified the 71 C. album genotypes into distinct clusters. The analyses revealed that accessions from the same geographical area were generally, but not entirely, clustered into the same group. Analysis of molecular variance was higher among populations, than within populations. The analysis of morphological traits revealed that there is no distinct separation among the C. album genotypes grown in different geographic areas. To our knowledge, this is the first study on the assessment of the genetic diversity in this species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27(4):617–631. https://doi.org/10.1007/s00299-008-0507-z

  2. Allel D, Ben-Amar A, Lamine M, Abdelly C (2017) Relationships and genetic structure of North African barley (Hordeum vulgare L.) germplasm revealed by morphological and molecular markers: biogeographical considerations. S Afr J Bot 112:1–10. https://doi.org/10.1016/j.sajb.2017.05.005

  3. Álvarez-Cansino L, Zunzunegui M, Díaz Barradas MC, Esquivias MP (2010) Gender-specific costs of reproduction on vegetative growth and physiological performance in the dioecious shrub Corema album. Ann Bot 106(6):989–998. https://doi.org/10.1093/aob/mcq197

  4. An D, Bykova NV, Debnath SC (2015) EST-PCR, EST-SSR and ISSR markers to identify a set of wild cranberries and evaluate their relationships. Can J Plant Sci 95(6):1155–1165. https://doi.org/10.4141/cjps-2015-158

  5. Andrade SC, Gonçalves F, Guiné R (2017a) Contribution for the physical-chemical characterization of Portuguese Crowberry (Corema album). Int J Food Sci Nutr 2(4):9–14

  6. Andrade SC, Guiné RP, Gonçalves FJ (2017b) Evaluation of phenolic compounds, antioxidant activity and bioaccessibility in white crowberry (Corema album). J Food Measur Charact 11(4):1936–1946. https://doi.org/10.1007/s11694-017-9576-4

  7. Burgos E, Thompson C, Giordano M, Tomas MA (2018) Pre-breeding studies in Panicum coloratum var. coloratum: characterization using agro-morphological traits and molecular markers. Trop Grassl Forrajes Trop 6(2):82–92

  8. Calviño-Cancela M (2002) Spatial patterns of seed dispersal and seedling recruitment in Corema album (Empetraceae): the importance of unspecialized dispersers for regeneration. J Ecol 90(5):775–784. https://doi.org/10.1046/j.1365-2745.2002.00711.x

  9. Calviño-Cancela M (2004) Ingestion and dispersal: direct and indirect effects of frugivores on seed viability and germination of Corema album (Empetraceae). Acta Oecol 26(1):55–64. https://doi.org/10.1016/j.actao.2004.03.006

  10. Calviño-Cancela M (2011) Gulls (Laridae) as frugivores and seed dispersers. Plant Ecol 212(7):1149–1157. https://doi.org/10.1007/s11258-011-9894-2

  11. Ciarmiello LF, Piccirillo P, Carillo P, De Luca A, Woodrow P (2015) Determination of the genetic relatedness of fig (Ficus carica L.) accessions using RAPD fingerprint and their agro-morphological characterization. S Afr J Bot 97:40–47. https://doi.org/10.1016/j.sajb.2014.11.012

  12. De Mendiburu F (2019) Agricolae: statistical procedures for agricultural research. R package version, 1.3-1

  13. Debnath SC (2007) Inter simple sequence repeat (ISSR) to assess genetic diversity within a collection of wild lingonberry (Vaccinium vitis-idaea L.) clones. Can J Plant Sci 87(2):337–344. https://doi.org/10.4141/P06-059

  14. Debnath SC (2009) Development of ISSR markers for genetic diversity studies in Vaccinium angustifolium. Nord J Bot 27(2):141–148. https://doi.org/10.1111/j.1756-1051.2009.00402.x

  15. Debnath SC, Sion M (2009) Genetic diversity, antioxidant activities, and anthocyanin contents in lingonberry. Int J Fruit Sci 9(2):185–199. https://doi.org/10.1080/15538360903005061

  16. D’Orazio M, D’Orazio MM (2019) Package ‘StatMatch’. Statistical matching or data fusion, version 1.3.0

  17. Fanizza G, Colonna G, Resta P, Ferrara G (1999) The effect of the number of RAPD markers on the evaluation of genotypic distances in Vitis vinifera. Euphytica 107(1):45–50. https://doi.org/10.1023/A:1003535916622

  18. Gawroński J, Kaczmarska E, Dyduch-Siemińska M (2017) Assessment of genetic diversity between Vaccinium corymbosum L. cultivars using RAPD and ISSR markers. Acta Sci Polonorum Hortorum Cultiv 16(3):129–140

  19. Giordani E, Müller M, Gambineri F, Paffetti D, Arena M, Radice S (2017) Genetic and morphological analysis of Berberis microphylla G. Forst. accessions in southern Tierra del Fuego. Plant Biosyst An Int J Deal Asp Plant Biol 151(4):715–728. https://doi.org/10.1080/11263504.2016.1211194

  20. Guitián P, Medrano M, Rodríguez M (1997) Reproductive biology of Corema album (L.) D. Don (Empetraceae) in the northwest Iberian Peninsula. Acta Bot Gall 144(1):119–128. https://doi.org/10.1080/12538078.1997.10515759

  21. Harrell Jr FE (2014) Hmisc package version 4.1-1

  22. Johns MA, Skroch PW, Nienhuis J, Hinrichsen P, Bascur G, Munoz-Schick C (1997) Gene pool classification of common bean landraces from Chile based on RAPD and morphological data. Crop Sci 37(2):605–613. https://doi.org/10.2135/cropsci1997.0011183X003700020049x

  23. Kassambara A, Mundt F (2017) Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0. 4. 2017

  24. Kouakou CK, Konan AD, N’Da Adopo AA, N’Da HA, Djaha A, Minhibo MY, Djidji MY, Dosso M, N’Guessan AEB (2018) Agro-morphological characterization of cashew (Anacardium occidentale L.) ecotypes from North-Central of Côte d’Ivoire. Fruits 73(5):1

  25. León-González AJ, Truchado P, Tomás-Barberán FA, López-Lázaro M, Barradas MCD, Martín-Cordero C (2013) Phenolic acids, flavonols and anthocyanins in Corema album (L.) D. Don berries. J Food Comp Anal 29(1):58–63. https://doi.org/10.1016/j.jfca.2012.10.003

  26. Martins SR, Vences FJ, de Miera LS, Barroso MR, Carnide V (2006) RAPD analysis of genetic diversity among and within Portuguese landraces of common white bean (Phaseolus vulgaris L.). Sci Hortic 108(2):133–142. https://doi.org/10.1111/plb.12584

  27. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci 76(10):5269–5273. https://doi.org/10.1073/pnas.76.10.5269

  28. Nóbrega F, Evaristo I, Lisboa A, Valdiviesso T, Trindade CS, Oliveira PB (2016) Abordagens moleculares para o estabelecimento da Corema album como nova cultura. V Colóquio Nacional da Produção de Pequenos Frutos 26:107

  29. Oksanen J, Blanchet FG, Kindt R et al (2013) Package ‘vegan’. Community Ecol Pack 2(9):1

  30. Oliveira PB, Dale A (2012) Corema album (L.) D. Don, the white crowberry: a new crop. J Berry Res 2:123–133. https://doi.org/10.3233/JBR-2012-033

  31. Paradis E, Potts A, Schliep K, Winter D (2018) Pegas: population and evolutionary genetics analysis system. Bioinformatics 26:419–420

  32. Pereira-Lorenzo S, dos Santos ARF, Ramos-Cabrer AM, Sau F, Díaz-Hernández MB (2012) Morphological variation in local pears from north-western Spain. Sci Hortic 138:176–182

  33. Powell W, Morgante M, Ander C, Hanafey M, Vogel J, Tingy S, Rafalaski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) marker for germplasm analysis. Mol Breed 2:225–238. https://doi.org/10.1007/BF00564200

  34. Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112. https://doi.org/10.1007/s001220051046

  35. R Core Team. R: A language and environment for statistical computing (2013) R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  36. Reddy MP, Sarla N, Siddiq EA (2002) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128(1):9–17. https://doi.org/10.1023/A:1020691618797

  37. Roldán-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, De Loose M (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134. https://doi.org/10.1023/A:1009680614564

  38. Semagn K (2002) Genetic relationships among ten endod types as revealed by a combination of morphological, RAPD and AFLP markers. Hereditas 137(2):149–156. https://doi.org/10.1034/j.1601-5223.2002.01600.x

  39. Solouki M, Mehdikhani H, Zeinali H, Emamjomeh AA (2008) Study of genetic diversity in Chamomile (Matricaria chamomilla) based on morphological traits and molecular markers. Sci Hortic 117(3):281–287. https://doi.org/10.1016/j.scienta.2008.03.029

  40. Ueno S, Rodrigues JF, Alves-Pereira A, Pansarin ER, Veasey EA (2015) Genetic variability within and among populations of an invasive, exotic orchid. AoB Plants. https://doi.org/10.1093/aobpla/plv077

  41. Yakimowski SB, Eckert CG (2008) Populations do not become less genetically diverse or more differentiated towards the northern limit of the geographical range in clonal Vaccinium stamineum (Ericaceae). New Phytol 180(2):534–544. https://doi.org/10.1111/j.1469-8137.2008.02582.x

  42. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20(2):176–183. https://doi.org/10.1006/geno.1994.1151

  43. Zoratti L, Palmieri L, Jaakola L, Häggman H (2015) Genetic diversity and population structure of an important wild berry crop. AoB Plants. https://doi.org/10.1093/aobpla/plv117

  44. Zunzunegui M, Díaz-Barradas MC, Clavijo A, Álvarez-Cansino L, Ain Lhout F, García Novo F (2006) Ecophysiology, growth timing and reproductive effort of three sexual forms of Corema album (Empetraceae). Plant Ecol 183:35–46. https://doi.org/10.1007/s11258-005-9004-4

Download references


The authors are thankful to Francisco Barreto and Francisco Luz for the technical assistance in the field work. This research was funded by the Operational Group “CompetitiveSouthBerries” (Partnership no. 21/Initiative no. 29/PDR2020-101-031721) which was co-financed by the PDR2020, Portugal 2020 and the European Commission.

Author information

Correspondence to João Jacinto.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jacinto, J., Brás de Oliveira, P., Valdiviesso, T. et al. Genetic diversity assessment among Corema album (L.) D. Don (Ericaceae) genotypes based on ISSR markers and agro-morphological traits. Genet Resour Crop Evol 67, 715–726 (2020). https://doi.org/10.1007/s10722-019-00849-8

Download citation


  • White crowberry
  • Genetic diversity
  • Inter-simple sequence repeat
  • Agro-morphological traits