Advertisement

Molecular characterisation of Solanum melongena L. and the crop wild relatives, S. violaceum Ortega and S. torvum Sw., using phylogenetic/DNA barcoding markers

  • Aishah TegallyEmail author
  • Yasmina Jaufeerally-Fakim
  • Mohammad Ehsan Dulloo
Short Communication
  • 2 Downloads

Abstract

The Leptostemonum clade (Solanum subgenus Leptostemonum Bitter) species Solanum melongena L. (the aubergine) is an economically important crop which requires the acquisition of adaptive traits, potentially from its wild relatives of the same clade, to reduce its susceptibility to biotic and abiotic stress. The application of matK, rbcL, psbA-trnH and ITS2 to Leptostemonum clade phylogeny and DNA barcoding is not documented. In this study, PCR amplification and direct sequencing of these markers from S. melongena, S. violaceum Ortega and S. torvum Sw., with commonly used primers, were tested. The four DNA regions were amplified from these species. matK, rbcL and psbA-trnH were successfully sequenced. Unlike rbcL, matK and psbA-trnH could singly produce species-specific groups in phylogenetic analyses, which showed species relationships consistent with those from previously published phylogenies determined using other chloroplast and nuclear DNA regions. The phylogeny from matK+psbA-trnH exhibited high bootstrap support for the S. melongena group as well as intraspecific resolution within S. violaceum. In the context of testing the use of DNA barcoding to discriminate between S. violaceum and S. anguivi Lam., interspecific and intraspecific p-distances for matK, rbcL and psbA-trnH in these two species were compared. No barcode gap or diagnostic character was found, thus eliminating these three markers as potential DNA barcodes to discriminate between S. violaceum and S. anguivi.

Keywords

Solanum melongena Solanum violaceum Solanum torvum Solanum anguivi Phylogenetics DNA barcoding 

Notes

Acknowledgements

We are grateful to the Tertiary Education Commission of Mauritius for a TEC MPhil/PhD Scholarship to the first author, and to the University of Mauritius for supporting this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Acquadro A, Barchi L, Gramazio P, Portis E, Vilanova S, Comino C, Plazas M, Prohens J, Lanteri S (2017) Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLoS ONE 12(7):e0180774.  https://doi.org/10.1371/journal.pone.0180774 CrossRefGoogle Scholar
  2. Asmussen CB, Dransfield J, Deickmann V, Barfod AS, Pintaud JC, William JB (2006) A new subfamily classification of the palm family (Arecaceae): evidence from plastid DNA phylogeny. Bot J Linn Soc 151(1):15–38.  https://doi.org/10.1111/j.1095-8339.2006.00521.x CrossRefGoogle Scholar
  3. Aubriot X, Singh P, Knapp S (2016) Tropical Asian species show that the Old World clade of ‘spiny solanums’ (Solanum subgenus Leptostemonum pro parte: Solanaceae) is not monophyletic. Bot J Linn Soc 181(2):199–223.  https://doi.org/10.1111/boj.12412 CrossRefGoogle Scholar
  4. Baker JG (1877) Flora of Mauritius and the Seychelles: a description of the flowering plants and ferns of those islands. L. Reeve & Co, LondonCrossRefGoogle Scholar
  5. Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14(4):1070–1085.  https://doi.org/10.1111/pbi.12454 CrossRefGoogle Scholar
  6. Bruni I, De Mattia F, Martellos S, Galimberti A, Savadori P, Casiraghi M, Nimis PL, Labra M (2012) DNA Barcoding as an effective tool in improving a digital plant identification system: a case study for the area of Mt. Valerio, Trieste (NE Italy). PLoS ONE 7(9):e43256. https://doi.org/10.1371/journal.pone.0043256
  7. CBOL Plant Working Group (2009) A DNA Barcode for land plants. Proc Natl Acad Sci USA 106(31):12794–12797.  https://doi.org/10.1073/pnas.0905845106 CrossRefGoogle Scholar
  8. Chen S, Yao H, Han J, Liu C, Song J et al (2010) Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species. PLoS ONE 5(1):e8613.  https://doi.org/10.1371/journal.pone.0008613 CrossRefGoogle Scholar
  9. Chen J, Zhao J, Erickson DL, Xia N, Kress WJ (2015) Testing DNA barcodes in closely related species of Curcuma (Zingiberaceae) from Myanmar and China. Mol Ecol Resour 15(2):337–348.  https://doi.org/10.1111/1755-0998.12319 CrossRefGoogle Scholar
  10. Daunay M-C (2008) Eggplant. In: Prohens J, Nuez F (eds) Vegetables II: Fabaceae, Liliaceae, Solanaceae and Umbelliferae. Springer, New York, pp 163–220CrossRefGoogle Scholar
  11. Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and Future Use of Wild Relatives in Crop Breeding. Crop Sci 57(3):1070–1082.  https://doi.org/10.2135/cropsci2016.10.0885 CrossRefGoogle Scholar
  12. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefGoogle Scholar
  13. Factfish (2016a) Eggplants, area harvested (hectare) for all countries. https://www.factfish.com/statistic/eggplants%2C%20area%20harvested. Accessed 22 Feb 2018
  14. Factfish (2016b) Eggplants, production quantity (tons) for all countries. https://www.factfish.com/statistic/eggplants%2C%20production%20quantity. Accessed 22 Feb 2018
  15. Fazekas AJ, Kuzmina ML, Newmaster SG, Hollingsworth PM (2012) DNA Barcoding Methods for Land Plants. In: Kress WJ, Erickson DL (eds) Methods in molecular biology: DNA barcodes: methods and protocols, vol 858. Humana Press, New York, pp 223–252CrossRefGoogle Scholar
  16. Frary A, Doganlar S (2013) Eggplant. In: Kang B-C, Kole C (eds) Genetics, Genomics and Breeding of Peppers and Eggplants. CRC Press, Boca Raton, London, New York, pp 116–143CrossRefGoogle Scholar
  17. Gouy M, Guindon S, Gascuel O (2010) SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Mol Biol Evol 27(2):221–224.  https://doi.org/10.1093/molbev/msp259 CrossRefGoogle Scholar
  18. Hebert PDN, Cywinska A, Ball SL, Dewaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270(1512):313–321.  https://doi.org/10.1098/rspb.2002.2218 CrossRefGoogle Scholar
  19. Jaeger P-ML (1985) Systematic studies in the genus Solanum in Africa. PhD thesis, University of BirminghamGoogle Scholar
  20. Jeanson ML, Labat JN, Little DP (2011) DNA barcoding: a new tool for palm taxonomists? Ann Bot 108(8):1445–1451.  https://doi.org/10.1093/aob/mcr158 CrossRefGoogle Scholar
  21. Johnson LA, Soltis DE (1994) matK DNA sequence and phylogenetic reconstruction in Saxifragaceae s. str. Syst Bot 19(1):143–156. https://doi.org/10.2307/2419718
  22. Knapp S, Vorontsova MS, Prohens J (2013) Wild relatives of the eggplant (Solanum melongena L.: Solanaceae): new understanding of species names in a complex group. PLoS ONE 8(2):e57039. https://doi.org/10.1371/journal.pone.0057039
  23. Koide Y, Onishi K, Kanazawa A, Sano Y (2008) Genetics of Speciation in Rice. In: Hirano H-Y, Hirai A, Sano Y, Sasaki T (eds) Biotechnology in agriculture and forestry 62: rice biology in the genomics era. Springer, Berlin, Heidelberg, pp 247–259CrossRefGoogle Scholar
  24. Kress WJ, Erickson DL (2008) DNA barcodes: Genes, genomics, and bioinformatics. Proc Natl Acad Sci USA 105(8):2761–2762.  https://doi.org/10.1073/pnas.0800476105 CrossRefGoogle Scholar
  25. Kress WJ, Erickson DL (2012) DNA Barcodes: Methods and Protocols. In: Kress WJ, Erickson DL (eds) Methods in molecular biology: DNA barcodes: methods and protocols. Humana Press, New York, pp 3–8CrossRefGoogle Scholar
  26. Kumar S, Stecher G, Tamura K (2015) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054
  27. Larcombe MJ, Holland B, Steane DA, Jones RC, Nicolle D, Vaillancourt RE, Potts BM (2015) Patterns of reproductive isolation in Eucalyptus—a phylogenetic perspective. Mol Biol Evol 32(7):1833–1846.  https://doi.org/10.1093/molbev/msv063 CrossRefGoogle Scholar
  28. Lester RN, Jaeger P-ML, Child A (2011) Solanum in Africa. Celia Lester, BirminghamGoogle Scholar
  29. Levin RA, Myers NR, Bohs L (2006) Phylogenetic relationships among the “spiny solanums” (Solanum Subgenus Leptostemonum, Solanaceae). Am J Bot 93(1):157–169.  https://doi.org/10.3732/ajb.93.1.157 CrossRefGoogle Scholar
  30. Li Y, Tong Y, Xing F (2016) DNA barcoding evaluation and its taxonomic implications in the recently evolved genus Oberonia Lindl. (Orchidaceae) in China. Front Plant Sci 7:1791. https://doi.org/10.3389/fpls.2016.01791
  31. MAIFS (Ministry of Agro-Industry and Food Security) (2016) National strategic action plan for the conservation and sustainable use of crop wild relatives for The Republic of Mauritius. MAIFS, MauritiusGoogle Scholar
  32. MAIFS (Ministry of Agro-Industry and Food Security) (2017) National Biodiversity Strategy and Action Plan 2017–2025. MAIFS, MauritiusGoogle Scholar
  33. Maxted N, Ford-Lloyd BV, Jury SL, Kell SP, Scholten MA (2006) Towards a definition of a crop wild relative. Biodivers Conserv 15(8):2673–2685.  https://doi.org/10.1007/s10531-005-5409-6 CrossRefGoogle Scholar
  34. McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W et al (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code): Adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Regnum Vegetabile 154. Koelz Scientific Books, OberreifenbergGoogle Scholar
  35. Naciri Y, Linder HP (2015) Species delimitation and relationships: The dance of the seven veils. Taxon, 64(1), 3–16. https://doi.org/10.12705/641.24
  36. Rajam MV, Rotino GL, Sihachakr D, Souvannavong V, Mansur E, Kumar PA (2008) Eggplant. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: transgenic vegetable crops. Blackwell Publishing Ltd, Oxford, pp 47–72CrossRefGoogle Scholar
  37. Raveendar S, Lee J-R, Shim D, Lee G-A, Jeon Y-A, Cho G-T, Ma K-H, Lee S-Y, Sung G-H, Chung J-W (2015) Comparative efficacy of four candidate DNA barcode regions for identification of Vicia species. Plant Genet Resour 15(4):286–295.  https://doi.org/10.1017/S1479262115000623 CrossRefGoogle Scholar
  38. Rieseberg LH, Willis JH (2007) Plant Speciation. Science 317(5840):910–914.  https://doi.org/10.1126/science.1137729 CrossRefGoogle Scholar
  39. Rieseberg LH, Blackman BK (2010) Speciation genes in plants. Ann Bot 106(3):439–455.  https://doi.org/10.1093/aob/mcq126 CrossRefGoogle Scholar
  40. Rotino GL, Sala T, Toppino L (2014) Eggplant. In: Pratap A, Kumar J (eds) Alien gene transfer in crop plants achievements and impacts, vol 2. Springer, New York, pp 381–409CrossRefGoogle Scholar
  41. Scott AJ (2000) Solanacées. In: Bosser J, Cadet T, Gueho J, Marais W (eds) Flore des Mascareignes: La Réunion, Maurice, Rodrigues. MSIRI, IRD, The Royal Botanic Gardens Kew, Mauritius, Paris, London, pp 1–43Google Scholar
  42. Singh AK (2017) Wild relatives of cultivated plants in India: a reservoir of alternative genetic resources and more. Springer, SingaporeCrossRefGoogle Scholar
  43. Stern S, Agra MDF, Bohs L (2011) Molecular delimitation of clades within New World species of the “spiny solanums” (Solanum subg. Leptostemonum). Taxon 60(5):1429–1441.Google Scholar
  44. Sun XQ, Bai MM, Yao H, Guo JL, Li MM, Hang YY (2013) DNA barcoding of populations of Fallopia multiflora, an indigenous herb in China. Genet Mol Res 12(3):4078–4089.  https://doi.org/10.4238/2013.September.27.9 CrossRefGoogle Scholar
  45. Taher D, Solberg SØ, Prohens J, Chou Y, Rakha M, Wu T (2017) World vegetable center eggplant collection: origin, composition, seed dissemination and utilization in breeding. Front Plant Sci 8:1484.  https://doi.org/10.3389/fpls.2017.01484 CrossRefGoogle Scholar
  46. Takahashi Y, Somta P, Muto C, Iseki K, Naito K, Pandiyan M, Natesan S, Tomooka N (2016) Novel genetic resources in the genus vigna unveiled from gene bank accessions. PLoS ONE 11(1):e0147568.  https://doi.org/10.1371/journal.pone.0147568 CrossRefGoogle Scholar
  47. Vorontsova MS, Knapp S (2016) A revision of the “Spiny Solanums”, Solanum subgenus Leptostemonum (Solanaceae), in Africa and Madagascar. Syst Bot Monogr 99:1–432Google Scholar
  48. Vorontsova MS, Stern S, Bohs L, Knapp S (2013) African spiny Solanum (subgenus Leptostemonum, Solanaceae): a thorny phylogenetic tangle. Bot J Linn Soc 173(2):176–193.  https://doi.org/10.1111/boj.12053 CrossRefGoogle Scholar
  49. Weese TL, Bohs L (2010) Eggplant origins: out of Africa, into the Orient. Taxon 59(1):49–56CrossRefGoogle Scholar
  50. Wyler SC, Naciri Y (2016) Evolutionary histories determine DNA barcoding success in vascular plants: seven case studies using intraspecific broad sampling of closely related species. BMC Evol Biol 16:103.  https://doi.org/10.1186/s12862-016-0678-0 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Agricultural and Food Science, Faculty of AgricultureUniversity of MauritiusRéduitMauritius
  2. 2.Bioversity InternationalRomeItaly

Personalised recommendations