Advertisement

Genetic Resources and Crop Evolution

, Volume 66, Issue 7, pp 1573–1586 | Cite as

On the diversity and origin of the barley complex agriocrithon inferred by iPBS transposon markers

  • Georgi BonchevEmail author
  • Roman Dušinský
  • Pavol Hauptvogel
  • Katarína Gaplovská-Kyselá
  • Miroslav Švec
Research Article
  • 131 Downloads

Abstract

The six-rowed barley with brittle rachis Hordeum agriocrithon A.E. Åberg is a diverse taxon connected with the evolution and domestication processes in the genus Hordeum. However, the origin and patterns of taxonomic divergence of this barley type is still hotly disputed. Here we utilized inter-primer binding site (iPBS) retrotransposon marker analysis to assess the genetic diversity of the complex taxonomic group H. agriocrithon in reference to the other two main barley taxa H. spontaneum K. Koch and H. vulgare L.. Based on selected iPBS primers, we demonstrated that the long-term process of natural evolution and human-driven domestication have influenced the dynamics of the TE fraction of the barley genome. iPBS markers reliably differentiated at molecular level the three main Hordeum taxa but also revealed genetic and phenotypic diversity patterns at within taxon level. Although H. agriocrithon can be considered as an autochthonous species due to its genetic divergence from H. spontaneum and H. vulgare, our results have shown that most of representatives of this taxon are of hybrid origin and hybridization events have shaped its highly heterogeneous genetic structure. Furthermore, our results strongly support the notion that H. spontaneum accessions are ancestors of the H. agriocrithon subgroup paradoxon and that the Caspian sea region is the likely place of initial cultivation and domestication of the six-rowed barley.

Keywords

Inter-primer binding site Transposable elements Genetic diversity Origin of six-rowed barley Domestication Evolution 

Notes

Funding

This work was supported by a postdoctoral fellowship grant to Dr. Georgi Bonchev (National Scholarship Programme of the Slovak Republic) and by the Slovak Research and Development Agency under the Contract Nos. APVV-0661-10 and APVV-15-0156.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10722_2019_814_MOESM1_ESM.eps (4.1 mb)
Supplementary Figure 1 Example iPBS fingerprints of H. agriocrithon accessions obtained using oligonucleotide primers 2224, 2374 and 2378 (EPS 4194 kb)
10722_2019_814_MOESM2_ESM.eps (520 kb)
Supplementary Figure 2 Patterns of band dynamics in the three barley taxa and within the agriocrithon group based on iPBS molecular data from primers 2374 and 2378. The estimated parameters are number of amplified loci (Nal), number of loci with fixed bands (Lfb), percentage of polymorphic loci (%) and average band frequencies (bf). In each panel, H. agriocrithon is subdivided into sub-groups agriocrithon (agr), dawoense (daw) and paradoxon (par) (EPS 519 kb)
10722_2019_814_MOESM3_ESM.doc (81 kb)
Supplementary material 3 (DOC 81 kb)
10722_2019_814_MOESM4_ESM.xls (34 kb)
Supplementary material 4 (XLS 34 kb)
10722_2019_814_MOESM5_ESM.xls (294 kb)
Supplementary material 5 (XLS 293 kb)

References

  1. Åberg E (1938) Hordeum agriocrithon, a wild six-rowed barley. Ann Agr Coll Sweden 6:159–216Google Scholar
  2. Åberg E (1940) The taxonomy and phylogeny of Hordeum L. sect. Cerealia Ands. Syrnbolae Bot. Upsalienses, 4(2):1–156Google Scholar
  3. Al-Beyroutiová M, Sabo M, Sleziak P, Dušinský R, Birčák E, Hauptvogel P, Kilian A, Švec M (2016) Evolutionary relationships in the genus Secale revealed by DArTseq DNA polymorphism. Plant Syst Evol 302:1083–1091.  https://doi.org/10.1007/s00606-016-1318-2 CrossRefGoogle Scholar
  4. Andeden EE, Baloch FS, Derya M, Kilian B, Özkan H (2013) iPBS-Retrotransposons-based genetic diversity and relationship among wild annual Cicer species. J Plant Biochem Biotechnol 22:453–466.  https://doi.org/10.1007/s13562-012-0175-5 CrossRefGoogle Scholar
  5. Azhaguvel P, Komatsuda T (2007) A phylogenetic analysis based on nucleotide sequence of a marker linked to the brittle rachis lucus indicates a diphyletic origin of barley. Ann Bot 100:1009–1015.  https://doi.org/10.1093/aob/mcm129 CrossRefGoogle Scholar
  6. Baloch FS, Alsaleh A, de Miera LES, Hatipoğlu R, Ciftci V, Karakoy T, Yıldız M, Ozkan H (2015a) DNA based iPBS-retrotransposon markers for investigating the population structure of pea (Pisum sativum) germplasm from Turkey. Biochem Syst Ecol 61:244–252.  https://doi.org/10.1016/j.bse.2015.06.017 CrossRefGoogle Scholar
  7. Baloch FS, Derya M, Andeden EE, Alsaleh A, Comertpay G, Kilian B, Ozkan H (2015b) Inter-primer binding site retrotransposon and inter-simple sequence repeat diversity among wild Lens species. Biochem Syst Ecol 58:162–168.  https://doi.org/10.1016/j.bse.2014.12.002 CrossRefGoogle Scholar
  8. Baranek M, Meszaros M, Sochorova J, Čechova J, Raddova J (2012) Utility of retrotransposon-derived marker systems for differentiation of presumed clones of the apricot cultivar Velkopavlovicka. Sci Hortic 143:1–6.  https://doi.org/10.1016/j.scienta.2012.05.022 CrossRefGoogle Scholar
  9. Belyayev A (2014) Bursts of transposable elements as an evolutionary driving force. J Evol Biol 27(12):2573–2584.  https://doi.org/10.1111/jeb.12513 CrossRefGoogle Scholar
  10. Bonchev G, Dusinský R, Hauptvogel P, Švec M (2017) Patterns of evolutionary trajectories and domestication history within the genus Hordeum assessed by REMAP markers. J Mol Evol 84(2–3):116–128.  https://doi.org/10.1007/s00239-016-9779-z CrossRefGoogle Scholar
  11. Buckler ES, Thornsberry JM, Kresovich S (2011) Molecular diversity, structure and domestication of grasses. Genet Res 77:213–218.  https://doi.org/10.1017/S0016672301005158 Google Scholar
  12. Dai F, Nevo E, Wu D, Comadran J, Zhou M, Qiu L, Chen Z, Beiles A, Chen G, Zhang G (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci USA 109:16969–16973.  https://doi.org/10.1073/pnas.1215265109 CrossRefGoogle Scholar
  13. Demirel U, Tındaş I, Yavuz C, Baloch FS (2018) Assessing genetic diversity of potato genotypes using inter-PBS retrotransposon marker system. Plant Genet Res 16:137–145.  https://doi.org/10.1017/S1479262117000041 CrossRefGoogle Scholar
  14. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  15. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491Google Scholar
  16. Feng ZY, Liu XJ, Zhang YZ, Ling HQ (2006) Genetic diversity analysis of Tibetan wild barley using SSR markers. Acta Genet Sin 33:917–928.  https://doi.org/10.1016/S0379-4172(06)60126-1 CrossRefGoogle Scholar
  17. Ferreira JR, Pereira JF, Turchetto C, Minella E, Consoli L, Delatorre CA (2016) Assessment of genetic diversity in Brazilian barley using SSR markers. Genet Mol Biol 39(1):86–96.  https://doi.org/10.1590/1678-4685-GMB-2015-0148 CrossRefGoogle Scholar
  18. Grandbastien MA, Audeon C, Bonnivard E et al (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res 110:229–241.  https://doi.org/10.1159/000084957 CrossRefGoogle Scholar
  19. Guo DL, Guo MX, Hou XG, Zhang GH (2014) Molecular diversity analysis of grape varieties based on iPBS markers. Bioc Syst Ecol 52:27–32.  https://doi.org/10.1016/j.bse.2013.10.008 CrossRefGoogle Scholar
  20. Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12:2521CrossRefGoogle Scholar
  21. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23(2):254–267.  https://doi.org/10.1093/molbev/msj030 CrossRefGoogle Scholar
  22. Jilal A, Grando S, Henry RJ, Lee LS, Rice NF, Hill H, Baum M, Ceccarelli S (2008) Genetic diversity of ICARDA’s worldwide barley landrace collection. Genet Resour Crop Evol 55(8):1221–1230.  https://doi.org/10.1007/s10722-008-9322-1 CrossRefGoogle Scholar
  23. Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci 97:6603–6607.  https://doi.org/10.1073/pnas.110587497 CrossRefGoogle Scholar
  24. Kalendar R, Antonius K, Smykal P, Schulman AH (2010) iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet 121(8):1419–1430.  https://doi.org/10.1007/s00122-010-1398-2 CrossRefGoogle Scholar
  25. Kartal-Alacam G, Yilmaz S, Marakli S, Gozukirmizi N (2014) Sukkula retrotransposon insertion polymorphism in barley. Russ J Plant Physiol 61:828–833CrossRefGoogle Scholar
  26. Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 32:102–106CrossRefGoogle Scholar
  27. Kenan-Eichler M, Leshkowitz D, Tal L et al (2011) Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics 188:263–272.  https://doi.org/10.1534/genetics.111.128348 CrossRefGoogle Scholar
  28. Koinishi T (2001) Genetic diversity in Hordeum agriocrithon E. Åberg, six-rowed barley with brittle rachis from Tibet. Genet Resour Crop Evol 48:27–34.  https://doi.org/10.1023/A:1011254927505 CrossRefGoogle Scholar
  29. Kraitshtein Z, Yaakov B, Khasdan V, Kashkush K (2010) Genetic and epigenetic dynamics of a retrotransposon after allopolyploidization of wheat. Genetics 186:801–812.  https://doi.org/10.1534/genetics CrossRefGoogle Scholar
  30. Laudencia-Chingcuanco D, Fowler DB (2012) Genotype-dependent burst of transposable element expression in crowns of hexaploid wheat (Triticum aestivum L.) during cold acclimation. Comp Funct Genom 23:2530.  https://doi.org/10.1155/2012/232530 Google Scholar
  31. Ledovskoy Y, Abugalieva S, Turuspekov Y (2010) Comparative assessment of the genetic variation in wild and cultivated barley based on SSR markers. Asian Australas J Plant Sci Biotechnol 4:21–26Google Scholar
  32. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433.  https://doi.org/10.1038/nature22043 CrossRefGoogle Scholar
  33. McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801.  https://doi.org/10.1126/science.15739260 CrossRefGoogle Scholar
  34. Naito K, Cho E, Yang G, Campbell MA, Yano K, Okumoto Y, Tanisaka T, Wessler SR (2006) Dramatic amplification of a rice transposable element during recent domestication. Proc Natl Acad Sci USA 103:17620–17625.  https://doi.org/10.1073/pnas.0605421103 CrossRefGoogle Scholar
  35. Nandha PS, Singh J (2014) Comparative assessment of genetic diversity between wild and cultivated barley using gSSR and EST-SSR markers. Plant Breed 133(1):28–35.  https://doi.org/10.1111/pbr.12118 CrossRefGoogle Scholar
  36. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, pp 219–220CrossRefGoogle Scholar
  37. Nemli S, Kianoosh T, Tanyolac MB (2015) Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) accessions through retrotransposon based interprimer binding sites (iPBSs) markers. Turk J Agric For 39:940–948.  https://doi.org/10.3906/tar-1505-59 CrossRefGoogle Scholar
  38. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  39. Pourkheirandish M, Kanamori H, Wu J, Sakumash BF, Komatsuda T (2018) Elucidation of the origin of “agriocrithon” based on domestication genes questions the hypothesis that Tibet is one of the centers of barley domestication. Plant J 94(3):525–534.  https://doi.org/10.1111/tpj.13876 CrossRefGoogle Scholar
  40. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  41. Roy NS, Choi J-Y, Lee S-l, Kim N-S (2015) Marker utility of transposable elements for plant genetics, breeding, and ecology: a review. Genes Genom 37:141–151.  https://doi.org/10.1007/s13258-014-0252-3 CrossRefGoogle Scholar
  42. Saghai Maroof M, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 91:5466–5470.  https://doi.org/10.1073/pnas.91.12.5466 CrossRefGoogle Scholar
  43. Schiemann E (1951) Neue Gerstenformen aus Ost-Tibet und ein weiterer Fund von Hordeum agriocrithon Åberg. Ber D Bot Ges 64:56–68Google Scholar
  44. Smýkal P, Bačová-Kerteszová N, Kalendar R, Corander J, Schulman AH, Pavelek M (2011) Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor Appl Genet 122:1385–1397.  https://doi.org/10.1007/s00122-011-1539-2 CrossRefGoogle Scholar
  45. Sneath PHA (1975) Cladistic representation of reticulate evolution. Syst Zool 24(3):360–368.  https://doi.org/10.2307/2412721 CrossRefGoogle Scholar
  46. Tanno K, Takeda K (2004) On the origin of six-rowed barley with brittle rachis, agriocrithon [Hordeum vulgare ssp. vulgare f. agriocrithon (Åberg) Bowd.], based on a DNA marker closely linked to the vrs1 (six-row gene) locus. Theor Appl Genet 110:145–150.  https://doi.org/10.1007/s00122-004-1816-4 CrossRefGoogle Scholar
  47. Tanno K, Taketa S, Takeda K, Komatsuda T (2002) A DNA marker closely linked to the vrs1 locus (row-type gene) indicates multiple origins of six-rowed cultivated barley (Hordeum vulgare L.). Theor Appl Genet 104(1):54–60.  https://doi.org/10.1007/s001220200006 CrossRefGoogle Scholar
  48. Ungerer MC, Strakosh SC, Stimpso KM (2009) Proliferation of Ty3/gypsy-like retrotransposons in hybrid sunflower taxa inferred from phylogenetic data. BMC Biol 7:40.  https://doi.org/10.1186/1741-7007-7-40 CrossRefGoogle Scholar
  49. Vitte C, Fustier MA, Alix K, Tenaillon MI (2014) The bright side of transposons in crop evolution. Brief Funct Genom 13(4):276–295.  https://doi.org/10.1093/bfgp/elu002 CrossRefGoogle Scholar
  50. von Bothmer R, Jacobsen N, Baden C, Aden RB, Jorgensen B, Linde-Laursen I (1995) An ecogeographical study of the genus Hordeum, 2nd edn. International Plant Genetic Resources Institute, FAO, RomeGoogle Scholar
  51. Wang A, Yu Z, Ding Y (2009) Genetic diversity analysis of wild close relatives of barley from Tibet and the Middle East by ISSR and SSR markers. C R Biol 332:393–403.  https://doi.org/10.1016/j.crvi.2008.11.007 CrossRefGoogle Scholar
  52. Wessler SR (1996) Turned on by stress. Plant retrotransposons. Curr Biol 6:959–961.  https://doi.org/10.1016/S0960-9822(02)00638-3 CrossRefGoogle Scholar
  53. Yaldiz G, Camlica M, Nadeem MA, Nawaz MA, Baloch FS (2018) Genetic diversity assessment in Nicotiana tabacum L. with iPBS-retrotransposons. Turk J Agric For 42:154–164.  https://doi.org/10.3906/tar-1708-32 CrossRefGoogle Scholar
  54. Zeng X, Guo Y, Xu Q, Mascher M, Guo G, Li S et al (2018) Origin and evolution of qingke barley in Tibet. Nat Commun 9(1):5433.  https://doi.org/10.1038/s41467-018-07920-5 CrossRefGoogle Scholar
  55. Zohary D (1959) Is Hordeum agriocrithon Åberg the ancestor of six-rowed cultivated barley? Evolution 13:279–280CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Georgi Bonchev
    • 1
    Email author
  • Roman Dušinský
    • 2
  • Pavol Hauptvogel
    • 3
  • Katarína Gaplovská-Kyselá
    • 2
  • Miroslav Švec
    • 2
  1. 1.Laboratory of Genome Dynamics and StabilityInstitute of Plant Physiology and GeneticsSofiaBulgaria
  2. 2.Department of Genetics, Faculty of Natural SciencesComenius UniversityBratislava 4Slovakia
  3. 3.National Agricultural and Food Centre - Research Institute of Plant ProductionPiestanySlovakia

Personalised recommendations