Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Cytogenetics of tuna in Argentina (two forms of Opuntia ficus-indica (L.) Mill. and O. robusta J. C. Wendl., Cactaceae)

Abstract

Opuntia ficus-indica (L.) Mill. f. ficus-indica (yellow tuna, cordobesa orange tuna, italiana orange tuna, salteña tuna) and f. amyclaea (white tuna, reddish tuna) and O. robusta J. C. Wendl. (cuaresma tuna) are extensively cultivated cacti in Argentina, mainly used as fodder and human food. Despite the importance of these resources, no studies of molecular cytogenetics considering the morphological characteristics of the varieties have been carried out. The main goal of this contribution is to determine the chromosome number, physical localization of ribosomal genes and amount of DNA in these taxa, including several populations with different fruit colors. The f. ficus-indica samples were octoploid, f. amyclaea hexaploid, and O. rubusta tetraploid. All taxa exhibited small similar-sized symmetrical chromosomes. Karyotypes were symmetrical with slight variations within each species. The 18S–5.8S–26S sites in all taxa were located on the secondary constrictions and the adjacent satellites at telomeric positions. The f. ficus-indica presented four 18S–5.8S–26S rDNA sites and the f. amyclaea three, whereas O. robusta had two. There were eight and six 5S rDNA sites in f. ficus-indica and f. amyclaea, respectively, and four in O. robusta. They were always proximally located on short arms of different chromosome pairs, always in a pericentromeric position. Both ribosomal genes were always asynthenic. The nuclear DNA in the octoploid f. ficus-indica presented a lower value (1Cx = 0.91 pg) than the hexaploid f.amyclaea (1Cx = 1.06 pg), whereas the tetraploid O. robusta had 1Cx = 0.87 pg. This cytogenetic evaluation is important for developing more efficient and faster selection strategies, contributing to obtaining new and improved varieties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adachi J, Watanabe K, Fukui K, Ohmido N, Kosuge K (1997) Chromosomal location and reorganization of the 45S and 5S rDNA in the Brachyscome lineariloba complex (Asteraceae). J Plant Res 110:371–377

  2. Adams SP, Leitch IJ, Bennett MD, Leitch AR (2000) Aloe L.: a second plant family without (TTTAGGG)n telomeres. Chromosoma 109:201–205

  3. Ahumada ML, Trillo C (2017) Diversidad de especies naturalizadas del género Opuntia (Cactaceae) utilizadas por los pobladores del norte de Córdoba (Argentina). Bol Soc Argent Bot 52:191–206

  4. Álvarez Parma B, Gallo H (2007) Análisis de factibilidad del cultivo de la Tuna en la localidad del caño, departamento La Paz. Dirección Provincial de Programación del Desarrollo, Ministerio de Producción y Desarrollo, Gobierno de la Provincia de Catamarca

  5. Anderson EF (2001) The cactus family. Timber Press, Portland

  6. Bandyopadhyay B, Sharma A (2000) The use of multivariate analysis of karyotypes to determine relationships between species of Opuntia (Cactaceae). Caryologia 53:121–126

  7. Barthlott W, Hunt DR (1993) Cactaceae. In: Kubitzki K (ed) The families and genera of vascular plants 2. Springer, Berlin, pp 161–197

  8. Bennett MD, Leitch IJ (2005) Plant genome size research: a field in focus. Ann Bot 95:1–6

  9. Bennett MD, Leitch IJ (2010) Plant DNA C-values database (release 5.0). http://data.kew.org/cvalues. Accessed 15 August 2011

  10. Bennett MD, Smith JB (1976) Nuclear DNA amount in Angiosperms. Proc R Soc London B 274:227–274

  11. Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Phil Trans R Soc B 334:309–345

  12. Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts and their modern uses: 807 new estimates. Ann Bot 86:859–909

  13. Casas A, Barbera G (2002) Mesoamerican domestication and diffusion. In: Nobel PS (ed) Cacti: biology and uses. University of California Press, Berkeley, pp 143–162

  14. Casas A, Pickersgill B, Caballero J, Valiente-Banuet A (1997) Ethnobotany and domestication in Xoconochtli, Stenocereus stellatus (Cactaceae), in the Tehuacán Valley and La Mixteca Baja, México. Econ Bot 51:279–292

  15. Castro JP, Medeiros-Neto E, Souza G, Alves LI, Batista FR, Felix LP (2016) CMA band variability and physical mapping of 5S and 45S rDNA sites in Brazilian cactaceae: pereskioideae and opuntioideae. Brazil J Bot 39:613–620

  16. Chiarini FE, Moreno N, Moré M, Barboza G (2016) Chromosomal changes and recent diversification in the Andean genus Jaborosa (Solanaceae). Bot J Linn Soc 183:57–74

  17. Cushman JC (2001) Crasulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol 127:1439–1448

  18. Del Angel C, Palomino G, Garcia A, Mendez I (2006) Nuclear genome size and karyotype analysis in Mammillaria species (Cactaceae). Caryologia 59:177–186

  19. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Prot 2:2233–2244

  20. Felker P, S del C Rodriguez, Casoliba RM, Filippini R, Medina D, Zapata R (2005) Comparison of Opuntia ficus-indica varieties of Mexican and Argentine origin for fruit yield and quality in Argentina. J Arid Environ 60:405–422

  21. Flores A, Borrego E, Gómez H, López A (1988) Variabilidad y estudio cromosómico del nopal (Opuntia spp.). Cact Suc Mex 33:91–99

  22. Gallegos-Vázquez C, Mondragón-Jacobo C (2011) Cultivares selectos de tuna, de México al Mundo. Servicio Nacional de Inspección y Certificación de Semillas, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación y Universidad Autónoma Chapingo, Chapingo

  23. Gerlach WL, Bedbrook JL (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885

  24. Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, Cambridge

  25. Grant V, Grant KA (1980) Systematics of the Opuntia phaecantha group in Texas. Bot Gaz 140:199–207

  26. Greilhuber J, Lysák MA, Doležel J, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms “genome size” and “C-value” to describe nuclear DNA contents. Ann Bot 95:255–260

  27. Griffith MP (2004) The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): new molecular evidence. Amer J Bot 91:1915–1921

  28. Hanson L, McMahon KA, Johnson MAT, Bennett MD (2001) First nuclear DNA C-values for another 25 angiosperm families. Ann Bot 88:851–858

  29. Hason RE, Islan-Faridi MN, Persival EA, Crane CF (1996) Distribution of 5S and 18S–28S rDNA loci in a tetraploid cotton (Gossypiun hirsutum L.) and its putative diploid ancestors. Chromosome 105:55–61

  30. Hunt D, Taylor N, Charles G (2006) The new cactus lexicon. DH Books, Milborne Port

  31. Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

  32. Kiesling R (1998) Origen, domesticación y distribución de Opuntia ficus-indica. J Prof Assoc Cactus Dev 3:50–59

  33. Kiesling R (1999) New synonyms of Opuntia ficus-indica (Cactaceae). Hickenia 2:309–314

  34. Las Peñas ML, Bernardello G, Kiesling R (2008) Karyotypes and fluorescent chromosome banding in Pyrrhocactus (Cactaceae). Plant Syst Evol 272:211–222

  35. Las Peñas ML, Urdampilleta JD, Bernardello G, Forni-Martins ER (2009) Karyotypes, heterochromatin, and physical mapping of 18S-26S rDNA in Cactaceae. Cytogenet Genome Res 124:72–80

  36. Las Peñas ML, Kiesling R, Bernardello G (2011) Karyotype, heterochromatin, and physical mapping of 5S and 18-5.8-26S rDNA genes in Setiechinopsis (Cactaceae), an Argentine endemic genus. Haseltonia 9:83–90

  37. Las Peñas ML, Urdampilleta JD, López-Carro B, Santiñaque F, Kiesling R, Bernardello G (2014) Classical and molecular cytogenetics and DNA content in Maihuenia and Pereskia (Cactaceae). Plant Syst Evol 300:549–558

  38. Las Peñas ML, Oakley L, Moreno NC, Bernardello G (2017) Taxonomic and cytogenetic studies in Opuntia ser. Armatae (Cactaceae). Botany 95:101–120

  39. Las Peñas ML, Kiesling R, Bernardello G (2019) Phylogenetic reconstruction of the genus Tephrocactus (Cactaceae) based on molecular, morphological, and cytogenetical data. Taxon

  40. Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663

  41. Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, Oxford

  42. Majure LC, Puente R, Pinkava DJ (2012) Miscellaneous chromosome numbers in Opuntieae DC. (Cactaceae) with a compilation of counts for the group. Haseltonia 18:67–78

  43. Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424

  44. Melo NF, Guerra M (2003) Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Ann Bot 92:309–316

  45. Moreno NC, Amarilla LD, Las Peñas ML, Bernardello G (2015) Molecular cytogenetic insights into the evolution of the epiphytic genus Lepismium (Cactaceae) and related genera. Bot J Linn Soc 177:263–277

  46. Negrón-Ortiz V (2007) Chromosome numbers, nuclear DNA content, and polyploidy in Consolea (Cactaceae), an endemic cactus of the Caribbean Islands. Amer J Bot 94:1360–1370

  47. Nobel PS (ed) (2002) Cacti: biology and uses. University of California Press, Berkeley

  48. Ohri D (1998) Genome size variation and plant systematics. Ann Bot 82:75–83

  49. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

  50. Palomino G, Heras HM (2001) Karyotypic studies in Opuntia cochinera, O. hyptiacantha, and O. strepthacantha (Cactaceae). Caryologia 54:147–154

  51. Palomino G, Doležel J, Cid R, Brunner I, Méndez I, Rubluo A (1999) Nuclear genome stability of Mammillaria san-angelensis (Cactaceae) regenerants induced by auxins in long term in vitro culture. Plant Sci 141:191–200

  52. Palomino G, Martínez J, Cepeda-Cornejo V, Pimienta-Barrios E (2012) Nuclear genome size and cytotype analysis in Agave cupreata Trel. & Berger (Agavaceae). Caryologia 65:281–294

  53. Pimienta-Barrios E, Muñoz-Urias A (1995) Domestication of Opuntias and cultivated varieties. In: Barbera G, Inglese P, Pimienta-Barrios E (eds) Agro-ecology, cultivation and uses of cactus pear. International Technical Cooperation Network on Cactus Pear, FAO publications, Rome

  54. Pinkava DJ (2002) On the evolution of the North American Opuntioideae. In: Hunt D, Taylor N (eds) Studies in the opuntioideae. Royal Botanic Gardens, Kew, pp 59–98

  55. Poggio L, Hunziker JH (1986) Nuclear DNA content variation in Bulnesia. J Hered 77:43–48

  56. Poggio L, Burghardt AD, Hunziker JH (1989) Nuclear DNA variation in diploid and polyploid taxa of Larrea (Zygophyllaceae). Heredity 63:321–328

  57. Ramírez Vallejo A, Ortega RP, López AH, Castillo FG, Livera MM, Rincón FS, Zavala FG (2000) Recursos fitogenéticos de México para la Alimentación y la Agricultura, Informe Nacional. Servicio Nacional de Inspección y Certificación de Semillas y Sociedad Mexicana, Chapingo

  58. Ranjan P, Ranjan JK, Misra RL, Dutta M, Singh B (2016) Cacti: notes ontheir uses and potentialforclimatechangemitigation. Genet Resour Crop Evol 63:901–917

  59. Raskina O, Barber JC, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 120:351–357

  60. Realini MF, Gottlieb AM, Font F, Picca P, Poggio L, González GE (2014) Cytogenetic characterization of southern South American species of Opuntia (Cactaceae, Opuntioideae). In: Hunt D (ed) Further studies in the Opuntioideae (Cactaceae). Succulent Plant Research 8, DH Books, Milborne Port, pp 31–50

  61. Reyes-Agüero JA, Valiente-Banuet A (2006) Reproductive biology of Opuntia: a review. J Arid Environ 64:549–585

  62. Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 12:225

  63. Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. Bios Scientific Publishers Limited, Oxford

  64. Segura S, Scheinvar L, Olalde G, Leblanc O, Filardo S, Muratalla A, Gallegos C, Flores S (2007) Genome sizes and ploidy levels in Mexican cactus pear species Opuntia (Tourn.) Mill. series Streptacanthae Britton et Rose, Leucotrichae DC., Heliabravoanae Scheinvar and Robustae Britton et Rose. Genet Resour Crop Evol 54:1033–1041

  65. Soltis DE, Visger CJ, Blaine Marchant D, Soltis PS (2016) Polyploidy: pitfalls and paths to a paradigm. Am J Bot 103:1146–1166

  66. Spencer JL (1955) A cytological study of the Cactaceae of Puerto Rico. Bot Gaz 117:33–37

  67. Stuppy W (2002) Seed characters and the classification of the Opuntioideae. In: Hunt D, Taylor N (eds) Studies in the Opuntioideae (Cactaceae). Succulent plant research 6, DH Books, Milborne Port, pp 25–58

  68. Taketa S, Harrison G, Heslop-Harrison JS (1999) Comparative physical mapping of the 5S and 18S-26S in nine wild Hordeum species and cyto-types. Theor Appl Genet 98:1–9

  69. Wallace RS, Gibson AC (2002) Evolution and systematics. In: Nobel P (ed) Cacti: biology and uses. University of California Press, Berkeley, pp 1–22

  70. Yuasa HH, Shimizus S, Kashiwai S, Kondo N (1974) Chromosome numbers and their bearing on the geographic distribution in the Subfamily Opuntioideae (Cactaceae). Rep Inst Breed Res Tokyo Univ Agric 4:1–10

  71. Zapata RM, Karlin UO, Lucero F, Coirini RO, Karlin M (2005) Manejo sustentable del ecosistema Salinas Grandes, Manejo de los tunales, Proyecto Desarrollo de un polo productivo integral en el norte de Córdoba: cultivo y procesamiento de la tuna (Opuntia ficus-indica) y especies aromáticas bajo certificación orgánica. Proyectos Federales de Innovación Productiva del Ministerio de Ciencia, Tecnología e Innovación Productiva, Cartilla N°2

  72. Zonneveld BJM, Leitch IJ, Bennett MD (2005) First nuclear DNA amounts in more than 300 angiosperms. Ann Bot 96:229–244

Download references

Acknowledgements

The authors thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (FONCyT), SECyT (Universidad Nacional de Córdoba, Argentina), and Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV-INTA) for funding this research.

Author information

Design of the research: M. Laura Las Peñas, Cecilia Trillo; performance of the research: Lujan Ahumada, Gonzalo Montenegro; data analysis and interpretation: Lujan Ahumada, Gonzalo Montenegro, Cecilia Trillo, Diego Uñates, María Laura Las Peñas; plant collection: Lujan Ahumada, Cecilia Trillo; and writing of the manuscript: Gabriel Bernardello, María Laura Las Peñas.

Correspondence to María Laura Las Peñas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahumada, L., Montenegro, G., Trillo, C. et al. Cytogenetics of tuna in Argentina (two forms of Opuntia ficus-indica (L.) Mill. and O. robusta J. C. Wendl., Cactaceae). Genet Resour Crop Evol 67, 645–654 (2020). https://doi.org/10.1007/s10722-019-00796-4

Download citation

Keywords

  • Chromosome number
  • Heterochromatin
  • Opuntia ficus-indica
  • O. robusta
  • Physical mapping
  • DNA content