Advertisement

Genetic Resources and Crop Evolution

, Volume 66, Issue 1, pp 243–257 | Cite as

Analysis of genetic diversity and population structure in Saharan maize (Zea mays L.) populations using phenotypic traits and SSR markers

  • Nawel Belalia
  • Antonio Lupini
  • Abderrahmane Djemel
  • Abdelkader Morsli
  • Antonio Mauceri
  • Concetta Lotti
  • Majda Khelifi-Slaoui
  • Lakhdar KhelifiEmail author
  • Francesco SunseriEmail author
Research Article
  • 121 Downloads

Abstract

Algerian maize has been cultivated in Saharan Oases for many centuries, determining its adaption to extreme environments. Therefore, maize landraces from Sahara could be considered as valuable genetic resources for breeding. Morphological and molecular characterization of fifty-six populations were assessed using 14 agro-morphological traits and 18 SSR markers. Populations were evaluated in field experiment in an augmented randomized complete block design. ANOVA on morphological data revealed significant difference among populations. Analysis of principal component showed two principal components describing 55.44% of total variation. Flowering time, plant height, ears traits and yield were the most discriminatory traits. Genetic analysis identified a large number of alleles (191) with mean value of 10.61 alleles per locus. High average PIC value (0.57) indicates informativeness of the selected markers in this study. The genetic structure analysis revealed a high genetic differentiation (Fst = 0.22) among populations, showing a greater genetic diversity within Algerian populations than among them. Bayesian model-based structure analysis assigned genotypes into two groups. Both phenotypic and SSR analysis revealed significant genetic diversity; albeit a clustering based on geographic origin was not observed. The wide genetic diversity of Saharan maize populations could be used as genetic resources in future maize breeding programs.

Keywords

Genetic diversity Morphological traits SSR markers Zea mays L. 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10722_2018_709_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 18 kb)
10722_2018_709_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 15 kb)
10722_2018_709_MOESM3_ESM.docx (18 kb)
Supplementary material 3 (DOCX 19 kb)
10722_2018_709_MOESM4_ESM.docx (15 kb)
Supplementary material 4 (DOCX 16 kb)

References

  1. Aci MM, Revilla P, Morsli A, Djemel A, Belalia N, Kadri Y, Khelifi-Saloui M, Ordás B, Khelifi L (2013) Genetic diversity in Algerian maize (Zea mays L.) landraces using SSR markers. Maydica 58:304–310Google Scholar
  2. Aci MM, Lupini A, Mauceri A, Morsli A, Khelifi L, Sunseri F (2018) Genetic variation and structure of maize populations from Saoura and Gourara oasis in Algerian Sahara. BMC Genet 19:51CrossRefGoogle Scholar
  3. Adetimirin VO, Vroh-BI I, The C, Menkir A, Mitchell SE, Kresovich S (2008) Diversity analysis of elite maize inbred lines adapted to west and central Africa using SSR markers. Maydica 53:143–149Google Scholar
  4. Adeymo O, Menkir A, Melaku G, Omidiji O (2011) Genetic diversity assessment and relationship among tropical-yellow endosperm maize inbred line using SSR markers. Maydica 56:1703–1709Google Scholar
  5. Betrán FJ, Beck D, Banziger M, Edmeades GO (2003) Genetic analysis of inbred and hybrid grain yield under stress and non-stress environments in tropical maize. Crop Sci 43:807–817.  https://doi.org/10.2135/cropsci2003.8070 CrossRefGoogle Scholar
  6. Beyene Y, Botha AM, Myburg AA (2005a) A comparative study of molecular and morphological methods of describing genetic relationships in traditional Ethiopian highland maize. Afr J Biotechnol 4:586–595Google Scholar
  7. Beyene Y, Botha AM, Myburg AA (2005b) Phenotypic diversity for morphological and agronomic traits in traditional Ethiopian highland maize accessions. S Afr J Plant Soil 22:100–105.  https://doi.org/10.1080/02571862.2005.10634689 CrossRefGoogle Scholar
  8. Beyene Y, Botha AM, Myburg A (2006a) Genetic diversity among traditional Ethiopian highland maize accessions assessed by simple sequences repeat (SSR) markers. Gen Res Crop Evol 53:1579–1588.  https://doi.org/10.1007/s10722-005-8509-y CrossRefGoogle Scholar
  9. Beyene Y, Botha AM, Myburg AA (2006b) Genetic diversity in traditional Ethiopian highland maize accessions assessed by AFLP markers and morphological traits. Biodiv Conserv 15:2655–2671.  https://doi.org/10.1007/s10531-005-5407-8 CrossRefGoogle Scholar
  10. Bolaños J, Edmeades GO (1996) The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crop Res 48:65–80.  https://doi.org/10.1016/0378-4290(96)00036-6 CrossRefGoogle Scholar
  11. Carimi F, Mercati F, De Michele R, Fiore MC, Riccardi P, Sunseri F (2011) Intra-varietal genetic diversity of the grapevine cultivar Nero d’Avola as revealed by microsatellite markers. Genet Resour Crop Evol 58:967–975.  https://doi.org/10.1007/s10722-011-9731-4 CrossRefGoogle Scholar
  12. Chen JP, Xu WW, Velten J, Xin ZG, Stout J (2012) Characterization of maize inbred lines for drought and heat tolerance. J Soil Water Conserv 67:354–364.  https://doi.org/10.2489/jswc.67.5.354 CrossRefGoogle Scholar
  13. Choukan R, Hossinzade A, Ghanadha MR, Warburton ML, Talei A, Mohammadi SA (2006) Use of SSR data to determine relationships and potential heterotic groupings within medium to late maturing Iranian maize inbred lines. Field Crop Res 95:212–222.  https://doi.org/10.1016/j.fcr.2005.02.011 CrossRefGoogle Scholar
  14. CIMMYT and IBPGR (1991) Descriptors of maize. CIMMYT/IBPGR, Rome, p 88Google Scholar
  15. Cömertpay G, Baloch FS, Kilian B, Ülger AC, Özkan H (2012) Diversity assessment of Turkish maize landraces based on fluorescent labelled SSR markers. Plant Mol Biol Rep 30:261.  https://doi.org/10.1007/s11105-011-0332-3 CrossRefGoogle Scholar
  16. Djemel A, Revilla P, Hanifi-Mekliche L, Malvar RA, Alvarez A, Khelifi L (2012) Maize (Zea mays L.) from the Saharan oasis: adaptation to temperate areas and agronomic performance. Genet Resour Crop Evol 59:1493–1504.  https://doi.org/10.1007/s10722-011-9778-2 CrossRefGoogle Scholar
  17. Dubreuil P, Warburton ML, Chastanet M, Hoisington D, Charcosset A (2006) More on the introduction of temperate maize into Europe: large-scale bulk SSR genotyping and new historical elements. Maydica 51:281–291Google Scholar
  18. Enoki H, Sato H, Koinuma K (2002) SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan. Theor Appl Genet 104:1270–1277CrossRefGoogle Scholar
  19. Eschholz TW, Peter R, Stamp P, Hund A (2008) Genetic diversity of Swiss maize assessed with individuals and bulks on agarose gels. Genet Resour Crop Evol 55:971–983CrossRefGoogle Scholar
  20. Eschholz TW, Stamp P, Peter R, Leipner J, Hund A (2010) Genetic structure and history of Swiss maize (Zea mays L. ssp. mays) landraces. Genet Resour Crop Evol 57:71–84.  https://doi.org/10.1007/s10722-009-9452-0 CrossRefGoogle Scholar
  21. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  22. Excoffier LL, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491Google Scholar
  23. Federer WT (1956) Augmented (or hoonuiaku) designs. Hawaii Plant Rec 55:128–191Google Scholar
  24. Franco J, Crossa J, Ribaut JM, Betran J, Warburton ML, Khairallah M (2001) A method for combining molecular markers and phenotypic attributes for classifying plant genotypes. Theor Appl Genet 103:944–952.  https://doi.org/10.1007/s001220100641 CrossRefGoogle Scholar
  25. Gouesnard B, Dallard J, Panouillé A, Boyat A (1997) Classification of French maize populations based on morphological traits. Agronomie 17:491–498CrossRefGoogle Scholar
  26. Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int 2015:431487Google Scholar
  27. Hartings H, Berardo N, Mazzinelli GF, Valoti P, Verderio A, Motto M (2008) Assessment of genetic diversity and relationship among maize (Zea mays L.) Italian landraces by morphological traits and AFLP profiling. Theor Appl Genet 117:831–842.  https://doi.org/10.1007/s00122-008-0823-2 CrossRefGoogle Scholar
  28. Hawtin G, Iwanaga M, Hodgkin T (1996) Genetic resources in breeding for adaptation. Euphytica 92:255–266.  https://doi.org/10.1007/BF00022853 CrossRefGoogle Scholar
  29. Heckenberger A, Melchinger AE, Ziegle JS, Joe LK, Häuser JD, Hutton M, Bohn M (2002) Variation of DNA among accessions within maize inbred lines and implications for identification of essentially derived varieties. I. Genetic and technical sources of variation in SSR data. Mol Breed 10:181–191.  https://doi.org/10.1023/A:1026040007166 CrossRefGoogle Scholar
  30. Henderson ST, Petes TD (1992) Instability of simple sequence DNA in Saccharomyces cerevisiae. Mol Cell Biol 12:2749–2757CrossRefGoogle Scholar
  31. Hoxha S, Shariflou MP, Sharp P (2004) Evaluation of genetic diversity in Albanian maize using SSR markers. Maydica 49:97–103Google Scholar
  32. Ignjatovic-Micic D, Ristic D, Babic V, Andjelkovic V, Vancetovic J (2015) A simple SSR analysis for genetic diversity estimation of maize landraces. Genetika 47:53–62CrossRefGoogle Scholar
  33. Iqbal J, Shinwari ZK, Rabbani MA (2015) Maize (Zea mays L.) germplasm agro-morphological characterization based on descriptive, cluster and principal component analysis. Pak J Bot 47:255–264Google Scholar
  34. Jaric JK, Prodanovic S, Iwarsson M, Minina A (2010) Diversity of maize (Zea mays L.) landraces in Eastern Serbia: morphological and storage protein characterization. Maydica 55:231–238Google Scholar
  35. Kashiani P, Saleh G, Panandam JM, Abdullah NAP, Selamat A (2012) Molecular characterization of tropical sweet corn inbred lines using microsatellite markers. Maydica 57:154–163Google Scholar
  36. Kumar S, Stecher G, Tamura K (2015) MEGA/: molecular evolutionary genetics analysis version 7.0 for bigger dataset. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  37. Legesse BW, Myburg AA, Pixley KV, Botha AM (2007) Genetic diversity of African maize inbred lines revealed by SSR markers. Hereditas 144:10–17.  https://doi.org/10.1111/j.2006.0018-0661.01921.x CrossRefGoogle Scholar
  38. Lewontin RC (1972) Testing the theory of natural selection. Nature 236:181–182CrossRefGoogle Scholar
  39. Loveless MD, Hamrick JL (1984) Ecological determinates of genetic structure in plant populations. Ann Rev Ecol System 15:65–95.  https://doi.org/10.1146/annurev.es.15.110184.000433 CrossRefGoogle Scholar
  40. McCann JC (2005) Maize and grace Africa’s encounter with a new world crop. Harvard University Press, Cambridge, pp 1500–2000CrossRefGoogle Scholar
  41. Mercati F, Leone M, Lupini A, Sorgonà A, Bacchi M, Abenavoli MR, Sunseri F (2013) Genetic diversity and population structure of a common bean (Phaseolus vulgaris L.) collection from Calabria (Italy). Genet Res Crop Evol 60:839–852.  https://doi.org/10.1007/s10722-012-9879-6 CrossRefGoogle Scholar
  42. Messmer MM, Melchinger AE, Hermann RG, Boppenmaier J (1993) Relationship among early European maize inbreds. II. Comparison of pedigree and RFLP data. Crop Sci 33:944–950.  https://doi.org/10.2135/cropsci1993.0011183X003300050014x CrossRefGoogle Scholar
  43. Mijangos-Cortés JO, Corona-Torres T, Espinosa- Victoria D, Muñoz-Orozco A, Romero-Peñaloza J, Santacruz-Varela A (2007) Differentiation among maize (Zea mays L.) landraces from the Tarasca Mountain Chain, Michoacan, Mexico and the Chalqueno complex. Genet Resour Crop Evol 54:309–325.  https://doi.org/10.1007/s10722-005-4775-y CrossRefGoogle Scholar
  44. N’Da HA, Akanvou L, Pokou ND, Akanza KP, Kouakou CK, Zoro BIIA (2016) Genetic diversity and population structure of maize landraces from Côte d’Ivoire. Afr J Biotech 15:2507–2516CrossRefGoogle Scholar
  45. Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273CrossRefGoogle Scholar
  46. Ngugi K, Cheserek J, Muchira C, Chemining’wa G (2013) Anthesis to silking interval usefulness in developing drought tolerant maize. J Renew Agric 1:84–90Google Scholar
  47. Noldin O, Revilla P, Ordás B (2016) Genetic diversity of the floury race of maize Avati Morotî from the Guaraní tribe in Paraguay. Span J Agric Res 14:e0707CrossRefGoogle Scholar
  48. Nyaligwa L, Hussein S, Amelework B, Ghebrehiwot H (2015) Genetic diversity analysis of elite maize inbred lines of diverse sources using SSR markers. Maydica 60:1–8Google Scholar
  49. Oppong A, Bedoya CA, Ewool MB, Asante MD, Thompson RN, Adu-Dapaah H, Lamptey JNL, Ofori K, Offei SK, Warburton ML (2014) Bulk genetic characterization of Ghanaian maize landraces using microsatellite markers. Maydica 59:1–8Google Scholar
  50. Peakall R, Smouse PE (2006) GenAlEx6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295.  https://doi.org/10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  51. Prasanna BM (2012) Diversity in global maize germplasm: characterization and utilization. J Biosci 37:843–855CrossRefGoogle Scholar
  52. Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  53. Qi-Lun Y, Ping F, Ke-Cheng K, Guang-Tang P (2008) Genetic diversity based on SSR markers in maize (Zea mays L.) landraces from Wuling mountain region in China. J Genet 87:287–291CrossRefGoogle Scholar
  54. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org Google Scholar
  55. Rebourg C, Gousnard B, Charcosset A (2001) Large scale molecular analysis of traditional European maize populations: relationships with morphological variation. Heredity 86:574–587CrossRefGoogle Scholar
  56. Reif JC, Warburton ML, Xia XC, Hoisington DA, Crossa J, Taba S, Muminovic J, Bohn M, Frisch M, Melchinger AE (2006) Grouping of accessions of Mexico races of maize revisited with SSR markers. Theor Appl Genet 113:177–185.  https://doi.org/10.1007/s00122-006-0283-5 CrossRefGoogle Scholar
  57. Ristić D, Babić V, Andelković V, Vancetović J, Miladenović Drinić S, Ignjatović-Micić D (2013) Genetic diversity in maize dent landraces assessed by morphological and molecular markers. Genetika 45:811–824CrossRefGoogle Scholar
  58. Romay MC, Butrón A, Ordás A, Revilla P, Ordás B (2012) Effects of recurrent selection on the genetic structure of two broad base Spanish maize synthetics. Crop Sci 52:1493–1502.  https://doi.org/10.2135/cropsci2011.10.0552 CrossRefGoogle Scholar
  59. Romero-Severson J, Smith JSC, Ziegle J, Hauser J, Joe L, Hookstra G (2001) Pedigree analysis and haplotype sharing within diverse groups of Zea mays L. inbreds. Theor Appl Genet 103:567–574.  https://doi.org/10.1007/PL00002911 CrossRefGoogle Scholar
  60. Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234.  https://doi.org/10.1038/72708 CrossRefGoogle Scholar
  61. Sharma L, Prasanna BM, Ramesh B (2010) Analysis of phenotypic and microsatellite-based diversity and population genetic structure of maize landraces in India, especially from the North-East Himalayan region. Genetica 138:619–631CrossRefGoogle Scholar
  62. Shiferaw B, Prasanna BM, Hellin J, Bänziger M (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur 3:307–327CrossRefGoogle Scholar
  63. Silva TA, Cantagalli LB, Saavedra J, Lopes AD, Mangolin CA, Pires MF, Machado S, Scapim CA (2015) Population structure and genetic diversity of Brazilian popcorn germplasm inferred by microsatellite markers. Electron J Biotech 18:181–187CrossRefGoogle Scholar
  64. Singode A, Prasanna BM (2010) Analysis of genetic diversity in the North-Eastern Himalayan (NEH) maize landraces of India using microsatellite markers. J Plant Biochem Biotech 19:33–41CrossRefGoogle Scholar
  65. Smith JSC, Smith OS (1992) Finger printing crop varieties. Adv Agron 47:85–140CrossRefGoogle Scholar
  66. Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. Freeman and Company, San FranciscoGoogle Scholar
  67. Snyder LA, Freifelder D, Hartl DL (1985) General genetics. Jones and Bartlett, BostonGoogle Scholar
  68. Tabu I, Munyiri S, Pathak R (2011) Phenotypic characterization of local maize landraces for drought tolerance in Kenya. In: Bationo A, Waswa B, Okeyo J, Maina F, Kihara J (eds) Innovations as key to the green revolution in Africa. Springer, DordrechtGoogle Scholar
  69. Thakur N, Prakash J, Thakur K, Sharma JK, Kumari R, Rana M, Lata S (2016) Genetic diversity and Structure of maize accessions of North Western Himalayas based on morphological and molecular markers. Proc Natl A Sci India B 87:1385–1398Google Scholar
  70. Wang RH, Yu YT, Zhao JR, Shi YS, Song YC, Wang TY, Li Y (2008) Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theor Appl Genet 117:1141–1153.  https://doi.org/10.1007/s00122-008-0852-x CrossRefGoogle Scholar
  71. Warburton ML, Xia X, Crossa J, Franco J, Melchinger AE, Frisch M, Bohn M, Hoisington D (2002) Genetic characterization of CIMMYT maize inbred lines and open pollinated populations using large scale fingerprinting methods. Crop Sci 42:1832–1840.  https://doi.org/10.2135/cropsci2002.1832 CrossRefGoogle Scholar
  72. Wasala SK, Prasanna BM (2012) Microsatellite markers-based diversity and population genetic analysis of selected lowland and mid-altitude maize landraces accessions of India. J Plant Biochem Biotech 22:392–400.  https://doi.org/10.1007/s13562-012-0167-5 CrossRefGoogle Scholar
  73. Wietholter P, de Melo Cruz, Sereno MJ, de Freitas Terra T, dos Anjos Delmar, Silva S, Barbosa Neto JF (2008) Genetic variability in corn landraces from Southern Brazil. Maydica 53:151–159Google Scholar
  74. Yao Q, Fang P, Kang K, Pan G (2007) Genetic diversity based on SSR markers in maize (Zea mays L) landraces from Wuling mountain region in China. J Genet 87:287–291Google Scholar
  75. Yücel C, Hizli H, Firincioglu HK, Cil A, Anlarsal AE (2009) Forage yield stability of common vetch (Vicia sativa L.) genotypes in the Cukurova and GAP Regions of Turkey. Turk J Agric For 33:119–125Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.LRGBÉcole Nationale Supérieure Agronomique (ENSA)El Harrach-AlgiersAlgeria
  2. 2.Dipartimento AgrariaUniversità Mediterranea di Reggio CalabriaReggio CalabriaItaly
  3. 3.Misión Biológica de Galicia, Pazo de SalcedoPontevedraSpain
  4. 4.Agrobiología Ambiental, Calidad de Suelos y Plantas (Universidad de Vigo)Unidad Asociada a la Misión Biológica de Galicia (CSIC)PontevedraSpain
  5. 5.Dipartimento di Scienze Agrarie, degli Alimenti e dell’AmbienteUniversità degli Studi di FoggiaFoggiaItaly

Personalised recommendations