Genetic Resources and Crop Evolution

, Volume 66, Issue 1, pp 225–241 | Cite as

Genetic diversity and differentiation in Patellifolia (Amaranthaceae) in the Macaronesian archipelagos and the Iberian Peninsula and implications for genetic conservation programmes

  • Lothar FreseEmail author
  • Marion Nachtigall
  • José María Iriondo
  • María Luisa Rubio Teso
  • Maria Cristina Duarte
  • Miguel Ângelo A. Pinheiro de Carvalho
Research Article


This is the first comprehensive investigation of the patterns of genetic diversity of Patellifolia species. The main objective of our research work is to determine Most Appropriate crop Wild relative Populations (MAWP) suited to conserve in situ wild relatives of the sugar beet. Individual plant samples of P. patellaris were collected at 26 and of P. procumbens/P. webbiana at seven sites and analysed with 24 and 22 microsatellite markers, respectively. On average 15 alleles per locus were found within the set of 581 P. patellaris and an average of 12 alleles per locus in the set of 172 P. procumbens/P. webbiana individuals. The factorial analysis showed diversity patterns which agree well with the geographic origin of the samples. The genetic data suggest that P. patellaris reproduces mainly by self-fertilisation while P. procumbens/P. webbiana have the signature of out-breeders. The measure Δ was used to calculate the genetic distance of each occurrence to the pooled remaining occurrences, the complement. Occurrences with either the lowest or the highest genetic distance to the complement are particularly suited to conserve the genetic diversity of the species. Eight occurrences of P. patellaris, two of P. procumbens and one for P. webbiana were determined according to this scheme, proposed as MAWP and recommended for the establishment of genetic reserves.


Genetic diversity Differentiation In situ conservation Genetic resources Microsatellite marker Patellifolia 



The collecting was supported in Spain by Arnoldo Santos Guerra, Pablo Ferrer and Emilio Laguna and in Portugal by Humberto Nobrega, Gregório Freitas and João Alves. Lorenz Bülow and Elena Rey assisted in documenting and processing of the data. Silvia Castro provided valuable comments on the manuscript. The research work would not have been possible without the excellent laboratory work of Petra Hertling. We are very grateful for the support of all colleagues and the supporting technical staff. This research was co-funded by the European Cooperative Programme for Plant Genetic Resources (ECPGR), Rome, Italy.

Authors’ contribution

LF coordinated the work, performed the statistical analyses and drafted the paper. MN supervised the laboratory work, documented and processed the raw data. JMI, MLRT, MCD, and MÂAPC organised and conducted the collection trips. All persons contributed to the writing of the paper.

Compliance with ethical standards

The research work complies with ethical standards.

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary material

10722_2018_708_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 kb)
10722_2018_708_MOESM2_ESM.pptx (91 kb)
Supplementary material 2 (PPTX 91 kb)
10722_2018_708_MOESM3_ESM.pptx (77 kb)
Supplementary material 3 (PPTX 78 kb)


  1. Aguirre-Gutiérrez J, van Treuren R, Hoekstra R, van Hintum TJL (2017) Crop wild relatives range shifts and conservation in Europe under climate change. Divers Distrib. Google Scholar
  2. Anonymous (2017) Acta Plantarum, from 2007 on—”Scheda IPFI, Acta Plantarum”. Accessed 9 Nov 2017
  3. Bilz M, Kell S, Maxted N, Lansdown RV (2011) European red list of vascular plants. Publications Office of the European Union, LuxembourgGoogle Scholar
  4. Castro S, Loureiro J, Iriondo J, Rubio Teso ML, Duarte MC, Romeiras MM, Pinheiro de Carvalho MAA, Santos Guerra A, Rey E, Frese L (2017) Cytogenetic diversity of Patellifolia species. Poster presented at 6th Global Botanic Gardens Congress, Botanic Gardens Conservation International, Conservatory and Botanical Garden of the City of Geneva, Switzerland, 26th–30th June 2017. Accessed Aug 2017
  5. de Vilmorin MJL (1923) L’hérédité chez la betterave cultivée. Thèse de Doctorat, soutenue le 11 juin 1923 devant la Faculté des Sciences de Paris. Gauthier-Villars et Cie, ParisGoogle Scholar
  6. El Bahloul Y, Gaboun F (2013) Genetic structure analysis for Moroccan wild beet germplasm. In: Maggioni L, Frese L, Lipman E (eds) Report of a working group on beta and the world beta network. fourth joint meeting, 20–22 June 2012, Cappelle-en-Pévèle, France. Bioversity International, Rome, Italy, p 5Google Scholar
  7. Enders M (2010) Entwicklung und Anwendung molekularer und informatorischer Werkzeuge zum genetischen Monitoring bei Wildrüben. Diplomarbeit im Fach Bioinformatik. Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III, Institut für Informatik, Halle, GermanyGoogle Scholar
  8. Eriksson G, Namkoong G, Roberds JH (1993) Dynamic gene conservation for uncertain futures. For Ecol Manag 62:15–37CrossRefGoogle Scholar
  9. EURISCO (2015) EURISCO Catalogue. Accessed Jan 2015
  10. Frese L (2002a) Combining static and dynamic management of PGR: a case study of Beta genetic resources. In: Engels JMM, Ramanatha Rao V, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. CABI Publishing, Wallingford, pp 133–147Google Scholar
  11. Frese L (2002b) Abschlußbericht zum Forschungs- und Entwicklungsvorhaben “GABI-BEET Genomanalyse der Zuckerrübe”, Laufzeit 01.01.2000 bis 31.12.2002, gefördert durch das BMBF Förderkennzeichen: 01 12283 A. Teilvorhaben: “Spaltende Populationen”Google Scholar
  12. Frese L, Bülow L, Nachtigall M, Rubio Teso ML, Duarte MC, Rey E, Iriondo JM (2017a) Genetic diversity of Patellifolia patellaris from the Iberian Peninsula, a crop wild relative of cultivated beets. Euphytica 213:187. CrossRefGoogle Scholar
  13. Frese L, Bülow L, Castro S, Duarte MC, Iriondo JM, Lohwasser U, Loureiro J, Maxted N, Nachtigall M, Nobrega H, Pinheiro de Carvalho MÂA, Santos Guerra A, Romeiras MM, Rubio ML, Rey E (2017b) Genetic diversity of Patellifolia (GeDiPa). Final Activity Report. ECPGR Activity Grant Scheme—First Call, 2014Google Scholar
  14. GBIF (2015) GBIF home page. Accessed Jan 2015
  15. Gillet EM (2013) DifferInt: compositional differentiation among populations at three levels of genetic integration. Mol Ecol Resour 13:953–964CrossRefGoogle Scholar
  16. Gillet EM, Gregorius H-R (2008) Measuring differentiation among populations at different levels of genetic integration. BMC Genet 9:60CrossRefGoogle Scholar
  17. Gregorius H-R, Gillet EM, Ziehe M (2003) Measuring differences of trait distributions between populations. Biom J 45:959–973CrossRefGoogle Scholar
  18. Gregorius H-R, Gillet EM, Ziehe M (2014) Relating measures of compositional differentiations among communities to conceptual models of migration and selection. Ecol Model 279:24–35CrossRefGoogle Scholar
  19. GRIN (2015) GRIN home page. Accessed Jan 2015
  20. Hammer K (2001) Chenopodiaceae. In: Hanelt P, Institute of Plant Genetics and Crop Plant Research (eds) Mansfeld’s encyclopedia of agricultural and horticultural crops (except ornamentals). Springer, Berlin, pp 235–241Google Scholar
  21. Harlan J, de Wet J (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517CrossRefGoogle Scholar
  22. Hohmann S, Kadereit JW, Kadereit G (2006) Understanding mediterranean-Californian disjunctions: molecular evidence from Chenopodiaceae-Betoideae. Taxon 55:67–78CrossRefGoogle Scholar
  23. IDBB (2015) IDBB home page. Accessed Jan 2015
  24. Iriondo JM, Maxted N, Kell SP, Ford-Lloyd BV, Lara-Romero C, Labokas J, Magos Brehm J (2012) Quality standards for genetic reserve conservation of crop wild relatives. In: Maxted N, Dulloo ME, Ford-Lloyd BV, Frese L, Iriondo JM, Pinheiro de Carvalho MÂA (eds) Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CAB International, Wallingford, pp 72–77CrossRefGoogle Scholar
  25. Jain SK (1975) Population structure and the effects of breeding systems. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. International Biological Programme 2. Cambridge University Press, Cambridge, pp 15–36Google Scholar
  26. Jung C, Pillen K, Frese L, Fähr S, Melchinger A (1993) Phylogenetic relationships between cultivated and wild species of the genus Beta revealed by DNA fingerprinting. Theor Appl Genet 86:449–457CrossRefGoogle Scholar
  27. Kadereit G, Hohmann S, Kadereit JW (2006) A synopsis of Chenopodiaceae subf. Betoideae and notes on taxonomy of Beta. Willdenowia 36:9–19CrossRefGoogle Scholar
  28. Kell S, Maxted N, Frese L, Iriondo JM (2012) In situ conservation of crop wild relatives: a strategy for identifying priority genetic reserves sites. In: Maxted N, Dulloo ME, Ford-Lloyd BV, Frese L, Iriondo JM, Pinheiro de Carvalho MÂA (eds) Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CABI Publishing, Wallingford, pp 7–19CrossRefGoogle Scholar
  29. Kleinschmit JRG, Kownatzki D, Gregorius H-R (2004) Adaptational characteristics of autochthonous populations—consequences for provenance delineation. For Ecol Manag 197:213–224CrossRefGoogle Scholar
  30. Lange W, Brandenburg WA, De Bock TSM (1999) Taxonomy and cultonomy of beet (Beta vulgaris L.). Bot J Linn Soc 130:81–96CrossRefGoogle Scholar
  31. Lara-Romero C, García-Fernández A, Robledo-Arnuncio JJ, Roumet M, Morente-López J, López-Gil A, Iriondo JM (2016) Individual spatial aggregation correlates with between-population variation in fine-scale genetic structure of Silene ciliata (Caryophyllaceae). Heredity 116:417–423CrossRefGoogle Scholar
  32. Löptien H (1984) Breeding nematode-resistant beets. II. Investigations into the inheritance of resistance to Heterodera schachtii Schm. in wild species of the section Patellares. Z Pflanzenzüchtg 93:237–245Google Scholar
  33. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197CrossRefGoogle Scholar
  34. Maxted N, Hawkes JG, Ford-Lloyd BV, Williams JT (1997) Chapter 22. A practical model for in situ genetic conservation. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the in situ approach. Kluwer Academic Publishers, London, pp 339–364CrossRefGoogle Scholar
  35. Maxted N, Iriondo JM, Dulloo E, Lane A (2008) Introduction: the integration of PGR conservation with protected area management. In: Iriondo JM, Maxted N, Dulloo E (eds) Plant genetic population management. CABI, Wallingford, pp 1–22Google Scholar
  36. Maxted N, Avagyan A, Frese L, Iriondo JM, Magos Brehm J, Singer A, Kell SP (2015) ECPGR concept for in situ conservation of crop wild relatives in Europe. Wild species in genetic reserves working group. Rome, European Cooperative Programme for Plant Genetic ResourcesGoogle Scholar
  37. Nachtigall N, Bülow L, Schubert J, Frese L (2016) Development of SSR markers for the genus Patellifolia (Chenopodiaceae). Appl Plant Sci 4:8. CrossRefGoogle Scholar
  38. Nachtigall M, Frese L, Bülow L, Rey E (2018) Microsatellite marker data of Patellifolia patellaris, P. procumbens and P. webbiana. [dataset]. Quedlinburg. Open Agrar Repository.
  39. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323CrossRefGoogle Scholar
  40. Panella LW, Lewellen RT (2007) Broadening the genetic base of sugar beet: introgression from wild relatives. Euphytica 154:383–400. CrossRefGoogle Scholar
  41. Parmesan C, Hanley ME (2015) Plants and climate change: complexities and surprises. Ann Bot 116:849–864. CrossRefGoogle Scholar
  42. Perrier X, Jacquemound-Collet JP (2006) DARwin software. Accessed 10 Oct 2010
  43. Raab-Straube EV, Raus T. (eds) (2016) Euro + Med-Checklist Notulae, 6 [Notulae ad floram euromediterraneam pertinentes No. 35]. Willdenowia, vol 46, pp 423–442.
  44. Romeiras MM, Vieira A, Silva DN, Moura M, Santos-Guerra A, Batista D, Duarte MC, Paulo OS (2016) Evolutionary and biogeographic insights on the macaronesian Beta-Patellifolia species (Amaranthaceae) from a time-scaled molecular phylogeny. PLoS ONE 11(3):e0152456. CrossRefGoogle Scholar
  45. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018CrossRefGoogle Scholar
  46. Scott AJ, Ford-Lloyd BV, Williams JT (1977) Patellifolia, nomen novum (Chenopodiaceae). Taxon 26(2–3):284CrossRefGoogle Scholar
  47. Thulin M, Rydberg A, Thiede J (2010) Identity of Tetragonia pentandra and taxonomy and distribution of Patellifolia (Chenopodiaceae). Willdenowia 40(1):5–11. CrossRefGoogle Scholar
  48. Weir BS, Cockerham CC (1984) Estimating F-Statistics for the analysis of population structure. Evolution 38:1358–1370Google Scholar
  49. Winner C (1981) Zuckerrübenbau. DLG-Verlag, Frankfurt am MainGoogle Scholar
  50. Zehm A, Weber G (2013) Umsetzung eines landesweiten floristischen Artenhilfsprogramms—Konzepte und Erfahrungen. ANLiegen Nat 35:40–54Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Breeding Research on Agricultural CropsQuedlinburgGermany
  2. 2.Área de Biodiversidad y ConservaciónUniversidad Rey Juan CarlosMóstolesSpain
  3. 3.Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  4. 4.ISOPlexis GenebankUniversidade da MadeiraFunchal, MadeiraPortugal

Personalised recommendations