Advertisement

Habitat fragmentation and population genetics of Stenocereus quevedonis (Cactaceae) in Michoacán, México: bases for in situ conservation of silvicultural managed genetic resources

  • Francisco Paz-Guerrero
  • Alejandro CasasEmail author
  • Hernán Alvarado-Sizzo
Research Article
  • 34 Downloads

Abstract

Stenocereus quevedonis (Ortega) Buxb., “pitire”, is an edible-fruit producing cactus endemic to tropical dry forests of central Mexico. It is silviculturally managed in areas disturbed for six decades. Previous studies showed that pollen flow among conserved and disturbed populations is feasible, but flower visitors have differential activity in those areas. That information and the increasing habitat fragmentation suggest possible differences in genetic diversity and gene flow among conserved and disturbed pitire populations; we therefore compared population genetics among conserved and disturbed sites, to identify actions for their in situ conservation. We sampled tissue from 20 adult pitires per site in three conserved and three disturbed sites. Samples were genotyped through six nuclear microsatellites to compare population genetics parameters through standard statistics and Bayesian analysis. Expected hetozygosity He varied (0.437–0.526), but no significant differences among disturbed and undisturbed sites were identified; gene flow Nm was 0.163–2.067, indicating overall genetic flow and drift equilibrium, but some populations show effects of drift. Genetic structure parameter Fst (0.048–0.020), indicate low genetic differentiation among populations. Bayesian analysis identified that one genetic group is absent in disturbed sites. Effects of disturbance on pitire populations are notorious due to loss of adult plants and one genetic group. Our findings suggest that low genetic differentiation might be in progress, only noticeable in genetic groups distribution but not in genetic diversity. It could be clearer in plants recruited after the disturbance events. Such effect could be buffered by actions favouring pollen and seed flow among populations.

Keywords

In situ conservation Pitire Silvicultural management Stenocereus 

Notes

Acknowledgements

The authors thank financial support from the Research Projects CONACYT CB-2013-01-221800 and PAPIIT, DGAPA, UNAM IN206217. We also thank Edgar Pérez-Negrón for fieldwork assistance and Carmen Julia Figueredo for help in laboratory work.

Compliance with ethical standards

Conflict of interest

The authors declare that they do not have conflict of interest with any person.

References

  1. Arita HT (1993) Conservation biology of the cave bats of Mexico. J Mamm 74:693–702CrossRefGoogle Scholar
  2. Arréola-Nava H (2006) Sistemática Filogenética del Género Stenocereus (Cactaceae). Dissertation, Instituto de Enseñanza e Investigación en Ciencias Agrícolas, MexicoGoogle Scholar
  3. Arreola-Nava H, Terrazas T (2003) Especies de Stenocereus con areolas morenas: clave y descripciones. Act Bot Mex 64:1–18Google Scholar
  4. Bárcenas RT, Yesson C, Hawkins JA (2011) Molecular systematics of the Cactaceae. Clad 27:470–489Google Scholar
  5. Barnosky AD, Hadly EA, Bascompte J et al (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58CrossRefGoogle Scholar
  6. Barthlott W, Hunt DR (1993) Cactaceae. In: Kubitzki K (ed) The families and genera of vascular plants. Springer, New York, pp 161–197Google Scholar
  7. Bawa KS (1990) Plant pollinator interactions in tropical rain forests. Annu Rev Ecol Syst 21:399–422CrossRefGoogle Scholar
  8. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci 98:4563–4568CrossRefGoogle Scholar
  9. Buchmann SL, Nabhan GP (1996) The forgotten pollinators. Island Press, CoveloGoogle Scholar
  10. Casas A, Barbera G (2002) Mesoamerican domestication and diffusion. In: Nobel P (ed) Cacti: biology and uses. University of California Press, Los Angeles, pp 143–162Google Scholar
  11. Casas A, Caballero J, Valiente-Banuet A (1999) Use, management and domestication of columnar cacti south-central Mexico: a historical perspective. J Ethnob 19:71–95Google Scholar
  12. Casas A, Lira R, Torres I et al (2016) Ethnobotany for sustainable ecosystem management: a regional perspective in the Tehuacán Valley. In: Lira R, Casas A, Blancas JJ (eds) Ethnobotany of Mexico. Interaction of people and plants in Mesoamerica. Springer, New York, pp 179–206CrossRefGoogle Scholar
  13. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefGoogle Scholar
  14. Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113CrossRefGoogle Scholar
  15. Cole FR, Wilson E (2006) Leptonycteris yerbabuenae. Mamm Sp 797:1–7CrossRefGoogle Scholar
  16. Comisión Nacional de Áreas Naturales Protegidas (2012) Programa de Manejo Formulado de la Reserva de la Biosfera Zicuirán-Infiernillo. CONANP, MexicoGoogle Scholar
  17. Cruse Sanders J, Parker C, Friar E, Huang D, Mashayekhi S, Prince L, Otero Arnaiz A, Casas A (2013) Managing diversity: domestication and gene flow in Stenocereus stellatus Riccob. (Cactaceae) in Mexico. Ecol Evol 3:1340–1355CrossRefGoogle Scholar
  18. Díaz-Cardenas B, Gómez-Flores L. Rosas-Espinoza VC et al. (2009). Obtención de ADN de cactáceas: comparación de dos métodos de extracción en Ferocactus histrix. En: Carvajal S, Pimienta- Barrios E (ed) Avances en la investigación científica en el CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico, pp 123–129Google Scholar
  19. Doyle J, Doyle JL (1987) Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull 19:11–15Google Scholar
  20. Earl DA, von Holdt BM (2012) Structure Harvester: a website and program to visualizing structure output and implementing the Evanno method. Conserv Gen Resour 4:359–361CrossRefGoogle Scholar
  21. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  22. Felger RS, Moser MB (1985) People of the desert and sea. Ethnobotany of the Seri Indians. The University of Arizona Press, TucsonGoogle Scholar
  23. Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. Godínez-Alvarez H, Ríos-Casanova L, Pérez F (2005) Characteristics of seedling establishment of Stenocereus stellatus (Cactaceae) in the Tehuacán Valley. Mex Southwest Nat 50:375–380CrossRefGoogle Scholar
  25. Golubov J, Martínez Valenzuela PA, Durán Campos EJ, Martínez-Cervantes Y (2010) Distribición espacial y nodricismo en Mammillaria carnea en el Municipio de Valerio Trujano, Cuicatlán. Oaxaca Cact Suculent Mex 55:56–64Google Scholar
  26. Guillot G, Mortier F, Estoup A (2005) A computer package for landscape genetics. Mol Ecol Not 5:708–711CrossRefGoogle Scholar
  27. Hunt D (1992) CITES Cactaceae checklist. Royal Botanic Gardens, KewGoogle Scholar
  28. Jacquemyn H, Brys R, Hermy M (2002) Patch occupancy, population size and reproductive success of a forest herb Primula elatior in a fragmented landscape. Oecologia 130:617–625CrossRefGoogle Scholar
  29. Jules ES, Rathcke BJ (1999) Mechanisms of reduced Trillium recruitment along edges of old-growth forest fragments. Conserv Biol 13:784–793CrossRefGoogle Scholar
  30. Klapwijk MJ, Lewis OT (2008) Effects of climate change and habitat fragmentation on trophic interactions. In: Claro KD, Oliveira PS, Rico-Gray V (eds) Tropical biology and conservation management. Encyclopedia of life support systems. UNESCO, OxfordGoogle Scholar
  31. Lozano-Garza OA (2013) Análisis de la estructura genética poblacional de la pitaya agria (Stenocereus gummosus) en el desierto sonorense. Dissertation. Centro de Investigaciones Biológicas del Noroeste, Baja California Sur, MéxicoGoogle Scholar
  32. Lozano-Garza OA, León de la Luz JL, Favela Lara S, García de León F (2015) New interpretations about clonal architecture for the sour pitaya (Stenocereus gummosus, Cactaceae), arising from microsatellite markers of de novo isolation and characterization. Open J Gen 5:1–11CrossRefGoogle Scholar
  33. McNeely JA, Miller KR, Reid WV, Mittermeier RA, Werner TB (1990) Conserving the world’s biological diversity. World Conservation Union, World Resources Institute, Conservation International, World Wildlife Fund–US, and the World Bank, WashingtonGoogle Scholar
  34. Méndez M, Dorantes A, Dzib G, Argáez J, Durán R (2006) Germination and seedling establishment of Pterocereus gaumeri a columnar, rare and endemic cactus from Yucatan. Mex Bot Sci 79:33–41Google Scholar
  35. Millenium Ecosystem Assessment (2005) Ecosystems an human well-being. biodiversity synthesis. World Resources Institute, WashingtonGoogle Scholar
  36. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62CrossRefGoogle Scholar
  37. Nabuurs GJ, Masera O, Andrasko K et al (2007) Forestry. Climate Change (2007): Mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  38. Otero- Arnaiz A, Cruse-Sanders J, Casas A, Hamrick JL (2004) Isolation and characterization of microsatellites in the columnar cactus: Polaskia chichipe and cross-species amplification within the Tribe Pachycereeae (Cactaceae). Mol Ecol Notes 4:265–267CrossRefGoogle Scholar
  39. Parra F, Casas A, Rocha V, González-Rodríguez A, Arias-Montes S, Rodríguez-Correa H, Tovar J (2014) Spatial distribution of genetic variation of Stenocereus pruinosus (Otto) Buxb. in Mexico: analysing evidence on the origins of its domestication. Genet Resour Crop Evol 62:893–912CrossRefGoogle Scholar
  40. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Not 6:288–295CrossRefGoogle Scholar
  41. Piñero D, Caballero-Mellado J, Cabrera-Toledo D, Canteros CE, Casas A et al (2008) La diversidad genética como instrumento para la conservación y el aprovechamiento de la biodiversidad: estudios en especies mexicanas. In: Sarukhán J (ed) El Capital natural de México, vol 1. Conocimiento actual de la biodiversidad. CONABIO, México, pp 437–494Google Scholar
  42. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  43. Rangel-Landa S, Dávila P, Casas A (2015) Facilitation of Agave potatorum: an ecological approach for assisted population recovery. For Ecol Manag 347:57–74CrossRefGoogle Scholar
  44. Rodríguez-Oseguera AG, Casas A, Herrerías-Diego Y, Pérez-Negrón E (2013) Effect of habitat disturbance on pollination biology of the columnar cactus Stenocereus quevedonis at landscape-level in central Mexico. Plant Biol 15:573–582CrossRefGoogle Scholar
  45. Saunders DA, Richard JH, Chris RM (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32CrossRefGoogle Scholar
  46. Suzán H, Nabhan GP, Patten DT (1994) Nurse plant and floral biology of a rare night- blooming cereus, Peniocereus striatus (Brandegee) F. Buxbaum. Conserv Biol 8:461–470CrossRefGoogle Scholar
  47. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Not 4:535–538CrossRefGoogle Scholar
  48. Vitousek PM (1994) Beyond global warming: ecology and global change. Ecology 75:1861–1876CrossRefGoogle Scholar
  49. Yetman D (1998) Scattered round stones. University of Arizona Press, TucsonGoogle Scholar
  50. Yetman D, Van Devender TR (2002) Mayo ethnobotany: land, history and traditional knowledge in northwestern Mexico. University of California Press, BerkeleyCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES)UNAMMoreliaMexico
  2. 2.Laboratorio de Biogeografía y Sistemática, Facultad de CienciasUNAMMexico CityMexico

Personalised recommendations