Advertisement

Genetic Resources and Crop Evolution

, Volume 66, Issue 2, pp 513–522 | Cite as

Morphological diversity of Huaya India fruits (Melicoccus oliviformis Kunth) in the Maya Lowlands

  • Mónica I. Jiménez-Rojas
  • Jaime Martínez-Castillo
  • Daniel Potter
  • Gabriel R. Dzib
  • Horacio S. Ballina-Gómez
  • Luis Latournerie-Moreno
  • Rubén H. Andueza-NohEmail author
Research Article
  • 181 Downloads

Abstract

The Maya area in Mexico, historically a region of major cultural development in Mesoamerica, has been divided into the Maya Highlands and Maya Lowlands. The Yucatan Peninsula is part of the Maya Lowlands, which has a great diversity of plant genetic resources, including the Huaya India, a tropical perennial tree of the family Sapindaceae. Its fruit is greatly appreciated by the Maya people, but the genetic diversity of this species has not been studied. Here we evaluated the morphological diversity in fruits from eight populations of Huaya India from four representative cultural–geographic zones in the Maya Lowland communities of the Yucatan Peninsula to generate basic knowledge to support the conservation and use of the species. Two populations from each of the four cultural–geographic zones with 10 individuals per population and 15 fruits per individual were evaluated, and four qualitative and 11 quantitative morphological traits of fruits and seeds were measured. Results indicated a high morphological diversity organized in two groups based on fruit size and flavor characteristics. This study highlights the importance of the Maya culture in the generation and maintenance of diversity of the Huaya India, as well as the importance of initiating programs for the management, sustainable utilization and conservation of this species in the Maya Lowlands of Mexico.

Keywords

Genetic diversity Huaya India Landraces Maya area Melicoccus oliviformis 

Notes

Acknowledgements

The first author thanks the Consejo Nacional de Ciencia y Tecnología-Mexico for the postgraduate scholarship and UC MEXUS-CONACYT for financial support of this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Abbo S, Pinhasi van-Oss R, Gopher A, Saranga Y, Ofner I, Peleg Z (2014) Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci 19:351–360.  https://doi.org/10.1016/j.tplants.2013.12.002 CrossRefGoogle Scholar
  2. Acevedo-Rodríguez P (2003) Mellicocceae (Sapindaceae): Melicoccus and Talisia. Flora neotropical monograph. Botanical Garden Bronx, New YorkGoogle Scholar
  3. Adams E, Culbert TP (1977) The origins of civilization in the Maya Lowlands. In: Adams REW (ed) The origins of Maya civilization. University of New Mexico, AlbuquerqueGoogle Scholar
  4. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622.  https://doi.org/10.1016/S0169-5347(01)02290-X CrossRefGoogle Scholar
  5. Baker HG (1972) Human influences on plant evolution. Econ Bot 26:32–43.  https://doi.org/10.2307/1295387 CrossRefGoogle Scholar
  6. Bhat MY, Padder BA, Wani IA, Banday FA, Ahsan-Hafiza Dar MA, Lone AA (2013) Evaluation of Apricot cultivars based on physicochemical characteristics observed under temperate conditions. Int J Agric Sci 3:535–537Google Scholar
  7. Brown AHD (2010) Variation under domestication in plants: 1859 and today. Philos Trans R Soc Lond B Biol Sci 365:2523–2530.  https://doi.org/10.1098/rstb.2010.0006 CrossRefGoogle Scholar
  8. Bugaud C, Etienne A, Mbéguié AM, Cazevielle P, Lobit P (2013) Modelling pH and titratable acidity in Banana fruit based on acid and mineral composition. Acta Hortic 1012:1223–1228.  https://doi.org/10.17660/ActaHortic.2013.1012.164 CrossRefGoogle Scholar
  9. Chávez-Pesqueira M, Núñez-Farfán J (2017) Domestication and genetics of papaya: a review. Front Ecol Evol 155:1–14.  https://doi.org/10.3389/fevo.2017.00155 Google Scholar
  10. Chávez-Pesqueira M, Suárez-Montes P, Castillo G, Núñez-Farfán J (2014) Habitat fragmentation threatens wild populations of Carica papaya (Caricaceae) in a lowland rainforest. Am J Bot 101:1092–1101.  https://doi.org/10.3732/ajb.1400051 CrossRefGoogle Scholar
  11. Coart E, Vekemans X, Smudlers MJM, Wagner I, Huylenbroeck VJ, van Bockstaele E (2003) Genetic variation in the endangered wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers. Mol Ecol 12:845–857.  https://doi.org/10.1046/j.1365-294X.2003.01778.x CrossRefGoogle Scholar
  12. Colunga-GarcíaMarín P, Zizumbo-Villarreal D (2004) Domestication of plants in maya lowlands. Econ Bot 58:S101–S110. http://www.jstor.org/stable/4256911
  13. De Klerk GJ, Hanecakova J, Jásik J (2008) Effect of medium-pH and MES on adventitious root formation from stem disks of apple. Plant Cell Tissue Organ Cult 95:285–292.  https://doi.org/10.1007/S11240-008-9442-5 CrossRefGoogle Scholar
  14. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2008) InfoStat, versión 2008. Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, Córdoba, Argentina, Grupo infoStatGoogle Scholar
  15. Duarte O, Paull RE (2015) Exotic fruits and nuts of the New World. CAB International, WallingfordCrossRefGoogle Scholar
  16. Duch-Gary J (1991) Physiography of the state of Yucatán: its relationship with agriculture. Chapingo, TexcocoGoogle Scholar
  17. Gao QH, Wu PT, Liu JR, Wu CS, Parry JW, Wang M (2011) Physico-chemical properties and antioxidant capacity of different jujube (Ziziphus jujuba Mill.) cultivars grown in loess plateau of China. Sci Hortic 130:67–72.  https://doi.org/10.1016/j.scienta.2011.06.005 CrossRefGoogle Scholar
  18. Garza M, Bustos G, Izquierdo A (1996) Los Mayas: su tiempo antiguo. Universidad Autónoma de México, Instituto de Investigaciones Filológicas, Centro de Estudios MayasGoogle Scholar
  19. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeont Electro 4:9–15Google Scholar
  20. High Brix Gardens (2017) http://www.highbrixgardens.com/brix-chart.html. Accessed 20 Nov 2017
  21. Johns T (1990) With bitter herbs they shall eat it: chemical ecology and the origins of human diet and medicine. University of Arizona, TucsonGoogle Scholar
  22. Kazankaya A (2002) Pomological traits of apricots (Prunus armeniaca L.) selected from bitlis seedling population. J Am Pomological Soc 56:184–188Google Scholar
  23. Khadivi-Khub A, Zamani Z, Fatahi MR (2012) Multivariate analysis of Prunus subgen. cerasus germplasm in Iran using morphological variables. Genet Resour Crop Evol 59:909–926.  https://doi.org/10.1007/s10722-011-9733-2 CrossRefGoogle Scholar
  24. Khadivi-Khub A, Jafari HR, Zamani Z (2013) Phenotypic and genotypic variation in Iranian sour and duke cherries. Trees 27:1455–1466.  https://doi.org/10.1007/s00468-013-0892-y CrossRefGoogle Scholar
  25. Khadivi-Khub A, Salimpour A, Rasouli M (2014) Analysis of grape germplasm from Iran based on fruit characteristics. Braz J Bot 37:105–113.  https://doi.org/10.1007/s40415-014-0054-5 CrossRefGoogle Scholar
  26. Krichen L, Audergon JM, Trifi-Farah N (2014) Variability of morphological characters among Tunisian apricot germplasm. Sci Hortic 179:328–339.  https://doi.org/10.1016/j.scienta.2014.09.054 CrossRefGoogle Scholar
  27. Lascurain MS, Avendaño S, Del Amo S, Niembro A (2010) Guía de frutos silvestres comestibles en Veracruz. Fondo sectorial para la investigación, el desarrollo y la innovación tecnológica forestal, Conafor-Conacyt, MéxicoGoogle Scholar
  28. Leakey RRB, Tchoundjeu Z, Smith RI, Munro RC, Fondoun JM, Kengue J, Anegbeh PO, Atangana AR, Waruhiu AN, Asaah E, Usoro C, Ukafor V (2004) Evidence that subsistence farmers have domesticated indigenous fruits (Dacryodes edulis and Irvingia gabonensis) in Cameroon and Nigeria. Agrofor Syst 60:101–111.  https://doi.org/10.1023/B:AGFO.0000013259.95628 CrossRefGoogle Scholar
  29. Mars M, Marrakchi M (1998) Diversity of pomegranate (Punica granatum L.) germplasm in Tunisia. Genet Resour Crop Evol 46:461–467.  https://doi.org/10.1023/A:1008774221687 CrossRefGoogle Scholar
  30. Mattos AL, Amorim PE, Amorim OBV, Cohen OK, Lodo SAC, Silva SO (2010) Agronomical and molecular characterization of banana germplasm. Pesq Agrop Bras 45:146–154.  https://doi.org/10.1590/S0100-204X2010000200005 CrossRefGoogle Scholar
  31. Milosevic T, Milosevic N (2010) Genetic variability and selection in natural populations of vineyard peach (Prunus persica ssp. vulgaris Mill.) in the krusevac region (Central Serbia). Agrociencia 44:297–309.  https://doi.org/10.1590/S1516-8913201200030004 Google Scholar
  32. Mratinić E, Akšić MF (2012) Phenotypic diversity of apple (Malus sp.) germplasm in south Serbia. Braz Arch Biol Technol 55:349–358.  https://doi.org/10.1590/S1516-89132012000300004 CrossRefGoogle Scholar
  33. Munsell (1976) Munsell color charts for plants tissues. Munsell color company. New windsor, New YorkGoogle Scholar
  34. Parker IM, López I, Petersen J, Anaya N, Cubilla-Rios L, Potter D (2010) Domestication syndrome in caimito (Chryphyllum cainito L.): fruit and seed characteristics. Econ Bot 64:161–175.  https://doi.org/10.1007/S12231-010-9121-4 CrossRefGoogle Scholar
  35. Pickersgill B (2009) Domestication of plants revisited Darwin to the present day. Bot J Linn Soc 161:203–212.  https://doi.org/10.1111/J.1095-8339.2009.01007 CrossRefGoogle Scholar
  36. Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848.  https://doi.org/10.1038/nature07895 CrossRefGoogle Scholar
  37. Ruz LA (1981) The mayan people. Salvat Mexicana de Ediciones, MexicoGoogle Scholar
  38. Sánchez AC, De Smedt S, Haq N, Samson R (2011) Comparative study on baobab fruit morphological variation between western and south-eastern Africa: opportunities for domestication. Genet Resour Crop Evol 58:1143–1156.  https://doi.org/10.1007/S10722-010-9647-4 CrossRefGoogle Scholar
  39. Sharer R (1999) La civilización maya. Fondo de Cultura Económica, MéxicoGoogle Scholar
  40. Sharma DP, Sharma N, Bawa R, Rajesh K (2005) Potential of apricot growing in the arid-cold desert region of North-Western Himalayas. Acta Hortic 696:61–63.  https://doi.org/10.17660/ActaHortic.2005.696.9 CrossRefGoogle Scholar
  41. Vihotogbé R, Van den Berg RG, Marc SM (2013) Morphological characterization of African bush mango trees (Irvingia species) in west Africa. Genet Resour Crop Evol 60:1597–1614.  https://doi.org/10.1007/s10722-013-9969-0 CrossRefGoogle Scholar
  42. Zamora-Crescencio P, Gutiérrez-Baez C, Folan JW, Dominguez-Carrasco MR, Villegas P, Cabrera-Mis G, Castro-Angulo Carballo JC (2012) La vegetación leñosa del sitio arqueológico de Oxpemul, municipio de Calakmul, Campeche, Mexico. Polibotánica 33:131–150Google Scholar
  43. Zizumbo-Villarreal D, Colunga-GarcíaMarin P (2010) Origin of agriculture and plant domestication in West Mesoamerica. Genet Resour Crop Evol 57:813–825.  https://doi.org/10.1007/s10722-009-9521-4 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Mónica I. Jiménez-Rojas
    • 1
  • Jaime Martínez-Castillo
    • 2
  • Daniel Potter
    • 3
  • Gabriel R. Dzib
    • 2
  • Horacio S. Ballina-Gómez
    • 1
  • Luis Latournerie-Moreno
    • 1
  • Rubén H. Andueza-Noh
    • 4
    Email author
  1. 1.Tecnológico Nacional de México/I.T. ConkalConkalMexico
  2. 2.Centro de Investigación Científica de YucatánMéridaMexico
  3. 3.Department of Plant SciencesUniversity of California, DavisDavisUSA
  4. 4.CONACYT-Instituto Tecnológico de ConkalConkalMexico

Personalised recommendations