Investigation of substrate specificity of sialidases with membrane mimetic glycoconjugates

  • Sonia Tomar
  • Xue-Long SunEmail author
Original Article


Sialidases or neuraminidases play important roles in various physiological and pathological processes by cleaving terminal sialic acids (Sias) (desialylation) from the glycans of both glycoproteins and glycolipids. To understand the biological significance of desialylation by sialidases, it is important to investigate enzyme specificity with native substrate in biological membrane of cells. Herein, we report a membrane-mimicking system with liposome ganglioside conjugates containing different lipids for evaluating substrate specificity of sialidase and the lipid effect on the enzyme activity. Briefly, liposomes of phosphatidylcholine (PC) and cholesterol with ganglioside (GM3 or GM1) along with different percentage of phosphatidylserine (PS) or phosphatidylethanolamine (PE) were prepared and characterized. Their desialylation profiles with Arthrobacter ureafaciens (bacterial) sialidase and H1N1 (influenza viral) sialidase were quantified by HPLC method. A diversity of substrate preference was found for both bacterial and viral sialidase to the liposome ganglioside conjugate platform. The apparent Km and Vmax were dependent on the type of lipid. These results indicate that the intrinsic characteristics of the membrane-like system affect the sialidase specificity and activity. This biomimetic substrate provides a better tool for unravelling the substrate specificity and the biological function of sialidases and for screening of functional sialidase inhibitors as well.


Desialylation Ganglioside Lipid Liposome Sialidase 



This work was supported by Faculty Research Fund from the Center for Gene Regulation in Health and Disease (GRHD) and Faculty Research Development (FRD) Fund at Cleveland State University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Kelm, S., Schauer, R.: Sialic acids in molecular and cellular interactions. Int. Rev. Cytol.175, 137–240 (1997)PubMedCrossRefGoogle Scholar
  2. 2.
    Alley, W.R., Novotny, M.V.: Glycomic analysis of sialic acid linkages in glycans derive from blood serum glycoproteins. J. Proteome Res.9, 3062–3072 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Schauer, R.: Achievements and challenges of sialic acid research. Glycoconj J.17, 485–499 (2000)PubMedCrossRefGoogle Scholar
  4. 4.
    Cohen, M., Varki, A.: The sialome-far more than the sum of its parts. OMICS. 14, 455–464 (2010)PubMedCrossRefGoogle Scholar
  5. 5.
    Monti, E., Preti, A., Venerando, B., Borsani, G.: Recent development in mammalian sialidase molecular biology. Neurochem. Res.27, 649–663 (2002)PubMedCrossRefGoogle Scholar
  6. 6.
    Hasegawa, T., Sugeno, N., Takeda, A., Kobayashi, M., Kikuchi, A., Furukawa, K., Miyagi, T., Itoyama, Y.: Role of Neu4L sialidase and its substrate ganglioside GD3 in neuronal apoptosis induced by catechol metabolites. FEBS Lett.581, 406–412 (2007)PubMedCrossRefGoogle Scholar
  7. 7.
    Sasaki, A., Hata, K., Suzuki, S., Sawada, M., Wada, T., Yamaguchi, K., Obinata, M., Tateno, H., Suzuki, H., Miyagi, T.: Overexpression of plasma membrane-associated sialidase attenuates insulin signaling in transgenic mice. J. Biol. Chem.278, 27896–27902 (2003)PubMedCrossRefGoogle Scholar
  8. 8.
    Miyagi, T., Yamaguchi, K.: Mammalian sialidases: physiological and pathological roles in cellular functions. Glycobiology. 22, 880–896 (2012)PubMedCrossRefGoogle Scholar
  9. 9.
    Saito, M, Yu, R.K. Biochemistry and Function of Sialidases. In: Rosenberg A. (eds) Biology of the Sialic Acids. 1995.CrossRefGoogle Scholar
  10. 10.
    Lewis, A.L., Lewis, W.G.: Host sialoglycans and bacterial sialidases: a mucosal perspective. Cell Microbiol.14, 1174–1182 (2012)PubMedCrossRefGoogle Scholar
  11. 11.
    Szymanski, C.M., Schnaar, R.L., Aebi, M. Bacterial and viral infections. In: Varki, A., Cummings, R.D., Esko, J.D., et al., editors. Essentials of Glycobiology [Internet]. 3rd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015-2017. Chapter 42 (2017).Google Scholar
  12. 12.
    Chan, J., Watson, J.N., Lu, A., Cerda, V.C., Borgford, T.J., Bennet, A.J.: Bacterial and viral sialidases: contribution of the conserved active site glutamate to catalysis. Biochemistry.51, 433–441 (2012)PubMedCrossRefGoogle Scholar
  13. 13.
    Roy, S., Honma, K., Douglas, C.W., Sharma, A., Stafford, G.P.: Role of sialidase in glycoprotein utilization by Tannerella forsythia. Microbiol.157, 3195–3202 (2011)CrossRefGoogle Scholar
  14. 14.
    Suzuki, T.: Imaging of sialidase activity and its clinical application. Biol. Pharm. Bull.40, 2015–2023 (2017)PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang, Y., Albohy, A., Zou, Y., Smutova, V., Pshezhetsky, A.V., Cairo, C.W.: Identification of selective inhibitors for human neuraminidase isoenzymes using C4, C7-modified 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA) analogues. J. Med. Chem.56, 2948–2958 (2013)PubMedCrossRefGoogle Scholar
  16. 16.
    Nan, X., Carubelli, I., Stamatos, N.M.: Sialidase expression in activated human T lymphocytes influences production of IFN-gamma. J. Leukoc. Biol. 81, 284–296 (2007)PubMedCrossRefGoogle Scholar
  17. 17.
    Stamatos, N.M., Liang, F., Nan, X., Landry, K., Cross, A.S., Wang, L.X., Pshezhetsky, A.V.: Differential expression of endogenous sialidases of human monocytes during cellular differentiation into macrophages. FEBS J.272, 2545–2556 (2005)PubMedCrossRefGoogle Scholar
  18. 18.
    Wang, D., Ozhegov, E., Wang, L., Zhou, A., Nie, H., Li, Y., Sun, X.-L.: Sialylation and desialylation dynamics of monocytes upon differentiation and polarization to macrophages. Glycoconjugate J.33, 725–733 (2016)CrossRefGoogle Scholar
  19. 19.
    Corfield, A.P., Higa, H., Paulson, J.C., Schauer, R.: The specificity of viral and bacterial sialidases for alpha(2-3)- and alpha(2-6)-linked sialic acids in glycoproteins. Biochim. Biophys. Acta. 744, 121–126 (1983)PubMedCrossRefGoogle Scholar
  20. 20.
    Yu, K., Tsai, Y.-T., Ariga, T., Yanagisawa, M.: Structures, biosynthesis, and functions of gangliosides - An overview. J. Oleo. Sci.60, 537–544 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Prokazova, N.V., Samovilova, N.N., Gracheva, E.V., Golovanova, N.K.: Ganglioside GM3 and its biological functions. Biochemistry (Moscow). 74, 235–249 (2009)CrossRefGoogle Scholar
  22. 22.
    Wolf, A.A., Fujinaga, Y., Lencer, W.I.: Uncoupling of the cholera toxin-GM1 ganglioside receptor complex from endocytosis, retrograde Golgi trafficking, and downstream signal transduction by depletion of membrane cholesterol. J. Biol. Chem. 277, 16249–16256 (2002)PubMedCrossRefGoogle Scholar
  23. 23.
    Ravindran, M.S., Tanner, L.B., Wenk, M.R.: Sialic acid linkage in glycosphingolipids is a molecular correlate for trafficking and delivery of extracellular cargo. Traffic. 14, 1182–1191 (2013)PubMedGoogle Scholar
  24. 24.
    Rodriguez, J.A., Piddini, E., Hasegawa, T., Miyagi, T., Dotti, C.G.: Plasma membrane ganglioside sialidase regulates axonal growth and regeneration in hippocampal neurons in culture. J. Neurosci.21, 8387–8395 (2001)PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kappagantula, S., Andrews, M.R., Cheah, M., Abad-Rodriguez, J., Dotti, C.G., Fawcett, J.W.: Neu3 sialidase-mediated ganglioside conversion is necessary for axon regeneration and is blocked in CNS axons. J. Neurosci.34, 2477–2492 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Pan, X, De Aragão, CBP, Velasco-Martin, JP, Priestman, DA, Wu, HY, Takahashi, K, Yamaguchi, K., Sturiale, L., Garozzo, D., Platt, F.M., Lamarche-Vane, N., Morales, C.R., Miyagi, T., Pshezhetsky, A.V.: Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides. FASEB J.31, 3467-3483(2017).PubMedCrossRefGoogle Scholar
  27. 27.
    Berenson, C.S., Nawar, H.F., Yohe, H.C., Castle, S.A., Ashline, D.J., Reinhold, V.N., Hajishengallis, G., Connell, T.D.: Mammalian cell ganglioside-binding specificities of E. coli enterotoxins LT-IIb and variant LT-IIb(T13I). Glycobiology. 20, 41-54 (2010).PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Shenoy, G.N., Loyall, J., Berenson, C.S., Kelleher Jr., R.J., Iyer, V., Balu-Iyer, S.V., Odunsi, K., Bankert, R.B.: Sialic acid-dependent inhibition of T cells by exosomal ganglioside GD3 in ovarian tumor microenvironments. J. Immunol.201, 3750–3758 (2018)PubMedCrossRefGoogle Scholar
  29. 29.
    Tringali, C., Papini, N., Fusi, P., Croci, G., Borsani, G., Preti, A., Tortora, P., Tettamanti, G., Venerando, B., Monti, E.: Properties of recombinant human cytosolic sialidase HsNEU2. The enzyme hydrolyzes monomerically dispersed GM1 ganglioside molecules. J. Biol. Chem.279, 3169-79 (2004).PubMedCrossRefGoogle Scholar
  30. 30.
    Chokhawala, H.A., Yu, H., Chen, X.: High-throughput substrate specificity studies of sialidases by using chemoenzymatically synthesized sialoside libraries. ChemBioChem.8, 194–201 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kopitz, J., Sinz, K., Brossmer, R., Cantz, M.: Partial characterization and enrichment of a membrane-bound sialidase specific for gangliosides from human brain tissue. Eur. J. Biochem.248, 527–534 (1997)PubMedCrossRefGoogle Scholar
  32. 32.
    Gatt, S., Gazit, B., Cestaro, B., Barenholz, Y.: Hydrolysis of gangliosides in micellar and liposomal dispersion by bacterial neuraminidases. Adv. Exp. Med. Biol.125, 137–146 (1980)PubMedCrossRefGoogle Scholar
  33. 33.
    Venerando, B., Cestaro, B., Fiorilli, A., Ghidoni, R., Preti, A., Tettamanti, G.: Kinetics of Vibrio cholerae sialidase action on gangliosidic substrates at different supramolecular-organizational levels. Biochem J.203, 735–742 (1982)PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Simons, K., Sampaio, J.L.: Membrane organization and lipid rafts. Cold Spring Harb Perspect. Biol.3, a004697 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sanders, C.R., Mittendorf, K.F.: Tolerance to changes in membrane lipid composition as a selected trait of membrane proteins. Biochemistry.50, 7858–7867 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Saito, M., Sugano, K., Nagai, Y.: Action of Arthrobacter ureafaciens sialidase on sialoglycolipid substrates. Mode of action and highly specific recognition of the oligosaccharide moiety of ganglioside GM1. J. Biol. Chem.254, 7845-7854 (1979).Google Scholar
  37. 37.
    Hitika, T., Aritomi, K., Tanaka, N., Toyoda, H., Suzuki, A., Toida, T., Abe, T., Yanagawa, Y., Ishizuka, I.: Determination of N-acetyl- and N-glycolylneuraminic acids in gangliosides by combination of neuraminidase hydrolysis and fluorometric high-performance liquid chromatography using a GM3 derivative as an internal standard. Anal. Biochem.281, 193–201 (2000)CrossRefGoogle Scholar
  38. 38.
    Stewart, J.C.: Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal. Biochem.104, 10–14 (1980)PubMedCrossRefGoogle Scholar
  39. 39.
    Murate, M., Abe, M., Kasahara, K., Iwabuchi, K., Umeda, M., Kobayashi, T.: Transbilayer distribution of lipids at nano scale. J. Cell Sci.128, 1627–1638 (2015)PubMedCrossRefGoogle Scholar
  40. 40.
    McMahon, H.T., Boucrot, E.: Membrane curvature at a glance. J. Cell Sci.128, 1065–1070 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wang, L., Wang, D., Zhou, X., Wu, L., Sun, X.-L.: Systematic investigation of quinoxaline derivatization of sialic acids and their quantitation applicability using high performance liquid chromatography. RSC Adv.4, 45797–45803 (2014)CrossRefGoogle Scholar
  42. 42.
    van Meer, G.: Dynamic Transbilayer Lipid Asymmetry. Cold Spring Harb Perspect Biol.3, a004671 (2011)PubMedPubMedCentralGoogle Scholar
  43. 43.
    Thomas, P.D., Poznansky, M.J.: Curvature and composition-dependent lipid asymmetry in phosphatidylcholine vesicles containing phosphatidylethanolamine and gangliosides. Biochim Biophys Acta. 978, 85–90 (1989)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD)Cleveland State UniversityClevelandUSA

Personalised recommendations