Glycan structures and their recognition roles in the human blood group ABH/Ii, Lea, b, x, y and Sialyl Lea,x active cyst glycoproteins

  • Albert M. WuEmail author
Mini Review


Human ovarian cyst glycoproteins (HOC, cyst gps) isolated from pseudomucinous type of human ovarian cyst fluids is one of the richest and pioneer sources for studying biosynthesis, structures and functional roles of blood group ABH, Lea,b,x,y, sLea and sLex active glycoproteins. After 70+ years of exploration, four top highlights are shared. (i) an updated concept of glycotopes and their internal structures in cyst gps was composited; (ii) the unknown codes of new genes in secreted cyst gps were unlocked as Lex and Ley; (iii) recognition profiles of cyst glycans and a sialic acid-rich (18%) glycan with lectins and antibodies were shown. (iv) Co-expression of Blood Group A/ A-Leb/y and B/B-Leb/y active Glycotopes in the same glycan chains were isolated and illustrated. These are the most advanced achievements since 1980.


Human ovarian cyst glycoproteins Human blood group, Lex, Ley, Sialyl Lea, and Sialyl Lex active glycotopes and key sugars Glycotopes Crytopes (the masked glycotopes) glycan (carbohydrate) binding protein Lectins 


HOC or cyst gp

Human ovarian cyst glycoprotein


Recognition factor

Lea, b, x, y

Lea,Leb, Lex, Ley

sLea, sLex

Sialyl Lea and Sialyl Lex


Glycan (Carbohydrate) binding Protein


Sialic acid

GP or gp



Enzyme-linked lectinosorbent assay; and inhibition assay



This work was supported by grants from the Chang Gung Medical Research plan (CMRPD No. 180482 and BMR 0008) Kwei-san, Tao-yuan, Taiwan, and the National Science Council (NSC 97-2628-B-182-002-MY3 and 97-2320-B-182-020-MY3) Taipei, Taiwan.

The author would like to thanks Drs. Khoo KH and Yu S. Y. for their long term contributions in the field of structural identification. Yang Z MD’s assistance to make the data analyzed and organized.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Wu, A.M.: Human Blood Group ABH/Ii, Le a,b,x,y, and Sialyl Le a,x Glycotopes Internal Structures; and Immunochemical Roles of Human Ovarian Cyst Glycoproteins. In: Chapter 3, The Molecular Immunology of Complex Carbohydrates-3 ( Wu, A. M. ed.). Adv. Exp. Med. Biol. 705, 33–52 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Wu, A.M.: Structural concepts of the human blood group A, B, H, Le a, Le b, I and i active glycoproteins purified from human ovarian cyst fluid. Adv. Exp. Med. Biol. 228, 351–394 (1988)PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Wu, A.M., Wu, J.H., Watkins, W.M., Chen, C.P., Tsai, M.C.: Binding properties of a blood group Le(a +) active sialoglycoprotein, purified from human ovarian cyst, with applied lectins. Biochim. Biophys. Acta. 1316(2), 139–144 (1996)PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Wu, A.M., Liu, J.H., Singh, T., Yang, Z.: Recognition Roles of mammalian structural units and polyvalency in lectin-glycan interactions. In: Chapter 6, The Molecular Immunology of Complex Carbohydrates-3. Adv. Exp. Med. Biol. 705, 99–116 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Wu, A.M., Khoo, K.H., Yu, S.Y., Yang, Z., Kannagi, R., Watkins, W.M.: Glycomic mapping of pseudomucinous human ovarian cyst glycoproteins: identification of Lewis and sialyl Lewis glycotopes. Proteomics. 7(20), 3699–3717 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Yang, Z., Wu, A.M., Kuo, H.W., Wu, J.H., Kannagi, R.: Expression of sialyl Le x, sialyl Le a, Le x and Le y glycotopes in secreted human ovarian cyst glycoproteins. Biochimie. 91, 423–433 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Yu, S.Y., Yang, Z., Khoo, K.H., Wu, A.M.: Identification of blood group a/ A-Le b/y and B/ B-Le b/y active glycotopes co-expressed on the O-glycans isolated from two distinct human ovarian cyst fluids. Proteomics. 9, 3445–3462 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Morgan, W.T.J., van Heyningen, R.: The occurrence of a B and O blood group substances in pseudomucinous ovarian cyst fluids. Brit. J. Exp. Path. 25, 5–15 (1944)Google Scholar
  9. 9.
    Pusztai, A., Morgan, W.T.J.: Studies in immunochemistry 18. The isolation and properties of a sialomucopolysaccharide possessing blood group Lea specificity and virus-receptor activity. Biochem. J. 78, 135–146 (1961)PubMedPubMedCentralGoogle Scholar
  10. 10.
    Morgan, W.T.J., Watkins, W.M.: Unravelling the biochemical basis of blood group ABO and Lewis antigenic specificity. Glycoconj. J. 17, 501–530 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Watkins, W.M.: Blood group specific substance. In: Gottschalk, A. (ed.) Glycoproteins. Elsevier, Amsterdam (1972)Google Scholar
  12. 12.
    Watkins, W.M.: Biochemistry and genetics of the ABO, Lewis, and P blood group systems. In: Harris, H., Hirschhorn, K. (eds.) Advances in Human Genetics. Plenum Press, New York (1981)Google Scholar
  13. 13.
    Watkins, W.M.: Molecular basis of antigenic specificity in the ABO, H and Lewis bloodgroup systems. In: Montreuil, J., Vliegenthart, J.F.G., Schachter, H. (eds.) Glycoproteins. Elsevier, Amsterdam (1995)Google Scholar
  14. 14.
    Kabat, E.A.: Blood Group Substances: their Chemistry and Immunochemistry. Academic Press, New York (1956)Google Scholar
  15. 15.
    Wu, A.M., Kabat, E.A., Nilsson, B., Zopf, D.A., Gruezo, F.G., Liao, J.: Immunochemical studies on blood groups. Purification and characterization of radioactive 3H-reduced di- to hexasaccharides produced by alkaline beta-elimination-borohydride 3H-reduced of Smith degraded blood group A active glycoproteins. J. Biol. Chem. 259, 7178–7186 (1984)PubMedPubMedCentralGoogle Scholar
  16. 16.
    Maisonrouge-McAuliffe, F., Kabat, E.A.: Immunochemical studies on blood groups. Structures and immunochemical properties of oligosaccharides from two fractions of blood group substance from human ovarian cyst fluid differing in B, I, and i activities and reactivity toward concanavalin A. Arch., Biochem. Biophys. 175, 90–113 (1976)CrossRefGoogle Scholar
  17. 17.
    Wu, A.M., Kabat, E.A., Pereira, M.E.A., Gruezo, F.G.: Liao, J : immunochemical studies on blood groups: the internal structure and immunological properties of water-soluble human blood group a substance studied by smith degradation, liberation, and fractionation of oligosaccharides and reaction with lectins. Arch. Biochem. Biophys. 215, 390–404 (1982)PubMedCrossRefGoogle Scholar
  18. 18.
    Hakomori, S., Kannagi, R.: Carbohydrate antigens in higher animals. In: Weir, D.M., Herzenberg, L.A., Blackwell, C.C. (eds.) Handbook of Experimental Immunology. Chapter 9. Blackwell Scientific Publications, Oxford (1986)Google Scholar
  19. 19.
    Wieruszeski, J.M., Michalski, J.C., Montreuil, J., Strecker, G., Peter-Katalinic, J., Egge, H., van Halbeek, H., Mutsaers, J.H., Vliegenthart, J.F.: Structure of the monosialy1 oligosaccharides derived from salivary gland mucin glycoproteins of the Chinese swiftlet (genus Collocalia). J. Biol. Chem. 262, 6650–6657 (1987)PubMedPubMedCentralGoogle Scholar
  20. 20.
    Lowe, J.B.: Glycosylation in the control of selectin counterreceptor structure and function. Immunol. Rev. 186, 19–36 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Kannagi, R.: Molecular mechanism for cancer-associated induction of sialyl Lewis x and sialyl Lewis a expression-the Warburg effect revisited. Glycoconj. J. 20, 353–364 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kannagi, R.: Regulatory roles of carbohydrate ligands for selectins in the homing of lymphocytes. Curr. Opin. Struct. Biol. 12, 599–608 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kannagi, R.: Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer. Glycoconj. J. 14, 577–584 (1997)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hakomori, S.: Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. In: Wu, A.M. (ed.) The Molecular Immunology of Complex Carbohydrates-2 in Adv. Exp. Med. Biol, vol. 491, pp. 369–402. Plenum Press, New York and London (2001)CrossRefGoogle Scholar
  25. 25.
    Brockhaus, I.D., Kuhns, W.: Glycosylation in leukemia and Blood Related disorders, In Glycoproteins and Human Disease, Chapter 13. Chapman & Hall, Austin (1997)Google Scholar
  26. 26.
    Hakomori, S. : Tumor-associated carbohydrate antigens and modified blood group antigens, Chapter 4, In: Glycoproteins and Disease, Montreuil J., Vliegenthart, J.F.G., Schachter, H. (Eds.), Elsevier, Amsterdam, New York (1996)Google Scholar
  27. 27.
    Aspholm-Hurtig, M., Dailide, G., Lahmann, M., Kalia, A., Ilver, D., et al.: Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science. 305, 519–522 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Brandão de Mattos, C.C., de Mattos, L.C.: Histo-blood group carbohydrates as facilitators for infection by Helicobacter pylori. Infect. Genet. Evol. 53, 167–174 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Tan, M., Jiang, X.: Histo-blood group antigens: a common niche for norovirus and rotavirus. Expert. Rev. Mol. Med. 16, e5 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Jiang, X., Liu, Y., Tan, M.: Histo-blood group antigens as receptors for rotavirus, new understanding on rotavirus epidemiology and vaccine strategy. Emerg. Microbes. Infect. 12, e22 (2017)Google Scholar
  31. 31.
    Sun, X., Li, D., Peng, R., Guo, N., Jin, M., Zhou, Y., Xie, G., Pang, L., Zhang, Q., Qi, J., Duan, Z.J.: Functional and structural characterization of P[19] rotavirus VP8* interaction with histo-blood group antigens. J. Virol. 90, 9758–9765 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Harris, J.B., Khan, A.I., LaRocque, R.C., Dorer, D.J., Chowdhury, F., Faruque, A.S., Sack, D.A., Ryan, E.T., Qadri, F., Calderwood, S.B.: Blood group, immunity, and risk of infection with Vibrio cholerae in an area of endemicity. Infect. Immun. 73, 7422–7427 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Goheen, M.M., Campino, S., Cerami, C.: The role of the red blood cell in host defence against falciparum malaria: an expanding repertoire of evolutionary alterations. Br. J. Haematol. 179, 543–556 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ohira, T., Cushman, M., Tsai, Y.M., Zhang, Y., Heckbert, S.R., Zakai, N.A., Rosamond, W.D., Folsom, A.R.: ABO blood group, other risk factors and incidence of venous thromboembolism: the longitudinal investigation of thromboembolism etiology (LITE). J. Thromb. Haemost. 5, 1455–1461 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Takagi, H., Umemoto, T.: All-literature investigation of cardiovascular evidence (ALICE) group. Meta-analysis of non-O blood group as an independent risk factor for coronary artery disease. Am J Cardiol. 116, 699–704 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Wolpin, B.M., Chan, A.T., Hartge, P., Chanock, S.J., Kraft, P., Hunter, D.J., Giovannucci, E.L., Fuchs, C.S.: ABO blood group and the risk of pancreatic cancer. J. Natl. Cancer Inst. 101, 424–431 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Nakao, M., Matsuo, K., Ito, H., Shitara, K., Hosono, S., et al.: ABO genotype and the risk of gastric cancer, atrophic gastritis, and helicobacter pylori infection. Cancer Epidemiol. Biomark. Prev. 20, 1665–1167 (2011)CrossRefGoogle Scholar
  38. 38.
    Rosen, S.D., Singer, M.S., Yednock, T.A., Stoolman, L.M.: Involvement of sialic acid on endothelial cells in organ-specific lymphocyte recirculation. Science. 228, 1005–1007 (1985)PubMedCrossRefGoogle Scholar
  39. 39.
    Vestweber, D., Blanks, J.E.: Mechanisms that regulate the function of the selectins and their ligands. Physiol. Rev. 79, 181–213 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Neelamegham, S.: Transport features, reaction kinetics and receptor biomechanics controlling selectin and integrin mediated cell adhesion. Cell Common Adhes. 11, 35–50 (2004)CrossRefGoogle Scholar
  41. 41.
    Ley, K., Kansas, G.S.: Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nat. Rev. Immunol. 4, 325–335 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    O’Brien, K.D., McDonald, T.O., Chait, A., Allen, M.D., Alpers, C.E.: Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation. 93, 672 (1996)PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Zopf, D., Hansson, G.C.: The chemical basis for expression of the sialyl-Lea antigen. Adv. Exp. Med. Biol. 228, 657–676 (1988)PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kannagi, R.: Molecular mechanism for cancer-associated induction of sialyl Lex and sialyl Lea expression- the Warburg effect revisited. Glycoconj. J. 20, 353–364 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Nanashima, A., Sakamoto, I., Hayashi, T., Tobinaga, S., Araki, M., Kunizaki, M., Nonaka, T., Takeshita, H., Hidaka, S., Sawai, T., Yasutake, T., Nagayasu, T.: Preoperative diagnosis of lymph node metastasis in biliary and pancreatic carcinomas: evaluation of the combination of multi-detector CT and serum CA19-9 level. Dig. Dis. Sci. 55, 3617–3626 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Xu, H.X., Liu, L., Xiang, J.F., Wang, W.Q., Qi, Z.H., Wu, C.T., Liu, C., Long, J., Xu, J., Ni, Q.X., Yu, X.J.: Postoperative serum CEA and CA125 levels are supplementary to perioperative CA19-9 levels in predicting operative outcomes of pancreatic ductal adenocarcinoma. Surgery. 161, 373–384 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Zhang, L.N., OuYang, P.Y., Xiao, W.W., Yu, X., You, K.Y., Zeng, Z.F., Xu, R.H., Gao, Y.H.: Elevated CA19–9 as the most significant prognostic factor in locally advanced rectal cancer following neoadjuvant chemoradiotherapy. Medicine. 94, e1793 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Song, J.Y., Chen, M.Q., Guo, J.H., Lian, S.F., Xu, B.H.: Combined pretreatment serum CA19-9 and neutrophil-to-lymphocyte ratio as a potential prognostic factor in metastatic pancreatic cancer patients. Medicine. 97, e9707 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Heggelund, J.E., Varrot, A., Imberty, A., Krengel, U.: Histo-blood group antigens as mediators of infections. Curr. Opin. Struct. Biol. 44, 190–200 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Beauharnois, M.E., Lindquist, K.C., Marathe, D., Vanderslice, P., Xia, J., Matta, K.L., Neelamegham, S.: Affinity and kinetics of sialyl Lewis-X and core-2 based oligosaccharides binding to L- and P-selectin. Biochem. 44, 9507–9519 (2005)CrossRefGoogle Scholar
  51. 51.
    Wu, A.M., Liu, J.H. : Lectins and ELLSA as powerful tools for Glycoconjugate recognition analyses, Glycoconj. J. in press (2019)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Glycomics Research Laboratory, Institute of Molecular and Cellular Biology, College of MedicineChang-Gung UniversityKwei-sanTaiwan

Personalised recommendations