Glycan structures and their recognition roles in the human blood group ABH/Ii, Lea, b, x, y and Sialyl Lea,x active cyst glycoproteins
Abstract
Human ovarian cyst glycoproteins (HOC, cyst gps) isolated from pseudomucinous type of human ovarian cyst fluids is one of the richest and pioneer sources for studying biosynthesis, structures and functional roles of blood group ABH, Lea,b,x,y, sLea and sLex active glycoproteins. After 70+ years of exploration, four top highlights are shared. (i) an updated concept of glycotopes and their internal structures in cyst gps was composited; (ii) the unknown codes of new genes in secreted cyst gps were unlocked as Lex and Ley; (iii) recognition profiles of cyst glycans and a sialic acid-rich (18%) glycan with lectins and antibodies were shown. (iv) Co-expression of Blood Group A/ A-Leb/y and B/B-Leb/y active Glycotopes in the same glycan chains were isolated and illustrated. These are the most advanced achievements since 1980.
Keywords
Human ovarian cyst glycoproteins Human blood group, Lex, Ley, Sialyl Lea, and Sialyl Lex active glycotopes and key sugars Glycotopes Crytopes (the masked glycotopes) glycan (carbohydrate) binding protein LectinsAbbreviations
- HOC or cyst gp
Human ovarian cyst glycoprotein
- RF
Recognition factor
- Lea, b, x, y
Lea,Leb, Lex, Ley
- sLea, sLex
Sialyl Lea and Sialyl Lex
- GBP(CBP)
Glycan (Carbohydrate) binding Protein
- SA
Sialic acid
- GP or gp
Glycoprotein
- ELLSA and ELLSIA
Enzyme-linked lectinosorbent assay; and inhibition assay
Notes
Acknowledgements
This work was supported by grants from the Chang Gung Medical Research plan (CMRPD No. 180482 and BMR 0008) Kwei-san, Tao-yuan, Taiwan, and the National Science Council (NSC 97-2628-B-182-002-MY3 and 97-2320-B-182-020-MY3) Taipei, Taiwan.
The author would like to thanks Drs. Khoo KH and Yu S. Y. for their long term contributions in the field of structural identification. Yang Z MD’s assistance to make the data analyzed and organized.
Compliance with ethical standards
Conflicts of interest
The authors declare that they have no conflicts of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
References
- 1.Wu, A.M.: Human Blood Group ABH/Ii, Le a,b,x,y, and Sialyl Le a,x Glycotopes Internal Structures; and Immunochemical Roles of Human Ovarian Cyst Glycoproteins. In: Chapter 3, The Molecular Immunology of Complex Carbohydrates-3 ( Wu, A. M. ed.). Adv. Exp. Med. Biol. 705, 33–52 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
- 2.Wu, A.M.: Structural concepts of the human blood group A, B, H, Le a, Le b, I and i active glycoproteins purified from human ovarian cyst fluid. Adv. Exp. Med. Biol. 228, 351–394 (1988)PubMedCrossRefPubMedCentralGoogle Scholar
- 3.Wu, A.M., Wu, J.H., Watkins, W.M., Chen, C.P., Tsai, M.C.: Binding properties of a blood group Le(a +) active sialoglycoprotein, purified from human ovarian cyst, with applied lectins. Biochim. Biophys. Acta. 1316(2), 139–144 (1996)PubMedCrossRefPubMedCentralGoogle Scholar
- 4.Wu, A.M., Liu, J.H., Singh, T., Yang, Z.: Recognition Roles of mammalian structural units and polyvalency in lectin-glycan interactions. In: Chapter 6, The Molecular Immunology of Complex Carbohydrates-3. Adv. Exp. Med. Biol. 705, 99–116 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
- 5.Wu, A.M., Khoo, K.H., Yu, S.Y., Yang, Z., Kannagi, R., Watkins, W.M.: Glycomic mapping of pseudomucinous human ovarian cyst glycoproteins: identification of Lewis and sialyl Lewis glycotopes. Proteomics. 7(20), 3699–3717 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
- 6.Yang, Z., Wu, A.M., Kuo, H.W., Wu, J.H., Kannagi, R.: Expression of sialyl Le x, sialyl Le a, Le x and Le y glycotopes in secreted human ovarian cyst glycoproteins. Biochimie. 91, 423–433 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
- 7.Yu, S.Y., Yang, Z., Khoo, K.H., Wu, A.M.: Identification of blood group a/ A-Le b/y and B/ B-Le b/y active glycotopes co-expressed on the O-glycans isolated from two distinct human ovarian cyst fluids. Proteomics. 9, 3445–3462 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
- 8.Morgan, W.T.J., van Heyningen, R.: The occurrence of a B and O blood group substances in pseudomucinous ovarian cyst fluids. Brit. J. Exp. Path. 25, 5–15 (1944)Google Scholar
- 9.Pusztai, A., Morgan, W.T.J.: Studies in immunochemistry 18. The isolation and properties of a sialomucopolysaccharide possessing blood group Lea specificity and virus-receptor activity. Biochem. J. 78, 135–146 (1961)PubMedPubMedCentralGoogle Scholar
- 10.Morgan, W.T.J., Watkins, W.M.: Unravelling the biochemical basis of blood group ABO and Lewis antigenic specificity. Glycoconj. J. 17, 501–530 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
- 11.Watkins, W.M.: Blood group specific substance. In: Gottschalk, A. (ed.) Glycoproteins. Elsevier, Amsterdam (1972)Google Scholar
- 12.Watkins, W.M.: Biochemistry and genetics of the ABO, Lewis, and P blood group systems. In: Harris, H., Hirschhorn, K. (eds.) Advances in Human Genetics. Plenum Press, New York (1981)Google Scholar
- 13.Watkins, W.M.: Molecular basis of antigenic specificity in the ABO, H and Lewis bloodgroup systems. In: Montreuil, J., Vliegenthart, J.F.G., Schachter, H. (eds.) Glycoproteins. Elsevier, Amsterdam (1995)Google Scholar
- 14.Kabat, E.A.: Blood Group Substances: their Chemistry and Immunochemistry. Academic Press, New York (1956)Google Scholar
- 15.Wu, A.M., Kabat, E.A., Nilsson, B., Zopf, D.A., Gruezo, F.G., Liao, J.: Immunochemical studies on blood groups. Purification and characterization of radioactive 3H-reduced di- to hexasaccharides produced by alkaline beta-elimination-borohydride 3H-reduced of Smith degraded blood group A active glycoproteins. J. Biol. Chem. 259, 7178–7186 (1984)PubMedPubMedCentralGoogle Scholar
- 16.Maisonrouge-McAuliffe, F., Kabat, E.A.: Immunochemical studies on blood groups. Structures and immunochemical properties of oligosaccharides from two fractions of blood group substance from human ovarian cyst fluid differing in B, I, and i activities and reactivity toward concanavalin A. Arch., Biochem. Biophys. 175, 90–113 (1976)CrossRefGoogle Scholar
- 17.Wu, A.M., Kabat, E.A., Pereira, M.E.A., Gruezo, F.G.: Liao, J : immunochemical studies on blood groups: the internal structure and immunological properties of water-soluble human blood group a substance studied by smith degradation, liberation, and fractionation of oligosaccharides and reaction with lectins. Arch. Biochem. Biophys. 215, 390–404 (1982)PubMedCrossRefGoogle Scholar
- 18.Hakomori, S., Kannagi, R.: Carbohydrate antigens in higher animals. In: Weir, D.M., Herzenberg, L.A., Blackwell, C.C. (eds.) Handbook of Experimental Immunology. Chapter 9. Blackwell Scientific Publications, Oxford (1986)Google Scholar
- 19.Wieruszeski, J.M., Michalski, J.C., Montreuil, J., Strecker, G., Peter-Katalinic, J., Egge, H., van Halbeek, H., Mutsaers, J.H., Vliegenthart, J.F.: Structure of the monosialy1 oligosaccharides derived from salivary gland mucin glycoproteins of the Chinese swiftlet (genus Collocalia). J. Biol. Chem. 262, 6650–6657 (1987)PubMedPubMedCentralGoogle Scholar
- 20.Lowe, J.B.: Glycosylation in the control of selectin counterreceptor structure and function. Immunol. Rev. 186, 19–36 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
- 21.Kannagi, R.: Molecular mechanism for cancer-associated induction of sialyl Lewis x and sialyl Lewis a expression-the Warburg effect revisited. Glycoconj. J. 20, 353–364 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
- 22.Kannagi, R.: Regulatory roles of carbohydrate ligands for selectins in the homing of lymphocytes. Curr. Opin. Struct. Biol. 12, 599–608 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
- 23.Kannagi, R.: Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer. Glycoconj. J. 14, 577–584 (1997)PubMedCrossRefPubMedCentralGoogle Scholar
- 24.Hakomori, S.: Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. In: Wu, A.M. (ed.) The Molecular Immunology of Complex Carbohydrates-2 in Adv. Exp. Med. Biol, vol. 491, pp. 369–402. Plenum Press, New York and London (2001)CrossRefGoogle Scholar
- 25.Brockhaus, I.D., Kuhns, W.: Glycosylation in leukemia and Blood Related disorders, In Glycoproteins and Human Disease, Chapter 13. Chapman & Hall, Austin (1997)Google Scholar
- 26.Hakomori, S. : Tumor-associated carbohydrate antigens and modified blood group antigens, Chapter 4, In: Glycoproteins and Disease, Montreuil J., Vliegenthart, J.F.G., Schachter, H. (Eds.), Elsevier, Amsterdam, New York (1996)Google Scholar
- 27.Aspholm-Hurtig, M., Dailide, G., Lahmann, M., Kalia, A., Ilver, D., et al.: Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science. 305, 519–522 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
- 28.Brandão de Mattos, C.C., de Mattos, L.C.: Histo-blood group carbohydrates as facilitators for infection by Helicobacter pylori. Infect. Genet. Evol. 53, 167–174 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
- 29.Tan, M., Jiang, X.: Histo-blood group antigens: a common niche for norovirus and rotavirus. Expert. Rev. Mol. Med. 16, e5 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
- 30.Jiang, X., Liu, Y., Tan, M.: Histo-blood group antigens as receptors for rotavirus, new understanding on rotavirus epidemiology and vaccine strategy. Emerg. Microbes. Infect. 12, e22 (2017)Google Scholar
- 31.Sun, X., Li, D., Peng, R., Guo, N., Jin, M., Zhou, Y., Xie, G., Pang, L., Zhang, Q., Qi, J., Duan, Z.J.: Functional and structural characterization of P[19] rotavirus VP8* interaction with histo-blood group antigens. J. Virol. 90, 9758–9765 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
- 32.Harris, J.B., Khan, A.I., LaRocque, R.C., Dorer, D.J., Chowdhury, F., Faruque, A.S., Sack, D.A., Ryan, E.T., Qadri, F., Calderwood, S.B.: Blood group, immunity, and risk of infection with Vibrio cholerae in an area of endemicity. Infect. Immun. 73, 7422–7427 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
- 33.Goheen, M.M., Campino, S., Cerami, C.: The role of the red blood cell in host defence against falciparum malaria: an expanding repertoire of evolutionary alterations. Br. J. Haematol. 179, 543–556 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
- 34.Ohira, T., Cushman, M., Tsai, Y.M., Zhang, Y., Heckbert, S.R., Zakai, N.A., Rosamond, W.D., Folsom, A.R.: ABO blood group, other risk factors and incidence of venous thromboembolism: the longitudinal investigation of thromboembolism etiology (LITE). J. Thromb. Haemost. 5, 1455–1461 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
- 35.Takagi, H., Umemoto, T.: All-literature investigation of cardiovascular evidence (ALICE) group. Meta-analysis of non-O blood group as an independent risk factor for coronary artery disease. Am J Cardiol. 116, 699–704 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
- 36.Wolpin, B.M., Chan, A.T., Hartge, P., Chanock, S.J., Kraft, P., Hunter, D.J., Giovannucci, E.L., Fuchs, C.S.: ABO blood group and the risk of pancreatic cancer. J. Natl. Cancer Inst. 101, 424–431 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
- 37.Nakao, M., Matsuo, K., Ito, H., Shitara, K., Hosono, S., et al.: ABO genotype and the risk of gastric cancer, atrophic gastritis, and helicobacter pylori infection. Cancer Epidemiol. Biomark. Prev. 20, 1665–1167 (2011)CrossRefGoogle Scholar
- 38.Rosen, S.D., Singer, M.S., Yednock, T.A., Stoolman, L.M.: Involvement of sialic acid on endothelial cells in organ-specific lymphocyte recirculation. Science. 228, 1005–1007 (1985)PubMedCrossRefGoogle Scholar
- 39.Vestweber, D., Blanks, J.E.: Mechanisms that regulate the function of the selectins and their ligands. Physiol. Rev. 79, 181–213 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
- 40.Neelamegham, S.: Transport features, reaction kinetics and receptor biomechanics controlling selectin and integrin mediated cell adhesion. Cell Common Adhes. 11, 35–50 (2004)CrossRefGoogle Scholar
- 41.Ley, K., Kansas, G.S.: Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nat. Rev. Immunol. 4, 325–335 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
- 42.O’Brien, K.D., McDonald, T.O., Chait, A., Allen, M.D., Alpers, C.E.: Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation. 93, 672 (1996)PubMedCrossRefPubMedCentralGoogle Scholar
- 43.Zopf, D., Hansson, G.C.: The chemical basis for expression of the sialyl-Lea antigen. Adv. Exp. Med. Biol. 228, 657–676 (1988)PubMedCrossRefPubMedCentralGoogle Scholar
- 44.Kannagi, R.: Molecular mechanism for cancer-associated induction of sialyl Lex and sialyl Lea expression- the Warburg effect revisited. Glycoconj. J. 20, 353–364 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
- 45.Nanashima, A., Sakamoto, I., Hayashi, T., Tobinaga, S., Araki, M., Kunizaki, M., Nonaka, T., Takeshita, H., Hidaka, S., Sawai, T., Yasutake, T., Nagayasu, T.: Preoperative diagnosis of lymph node metastasis in biliary and pancreatic carcinomas: evaluation of the combination of multi-detector CT and serum CA19-9 level. Dig. Dis. Sci. 55, 3617–3626 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
- 46.Xu, H.X., Liu, L., Xiang, J.F., Wang, W.Q., Qi, Z.H., Wu, C.T., Liu, C., Long, J., Xu, J., Ni, Q.X., Yu, X.J.: Postoperative serum CEA and CA125 levels are supplementary to perioperative CA19-9 levels in predicting operative outcomes of pancreatic ductal adenocarcinoma. Surgery. 161, 373–384 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
- 47.Zhang, L.N., OuYang, P.Y., Xiao, W.W., Yu, X., You, K.Y., Zeng, Z.F., Xu, R.H., Gao, Y.H.: Elevated CA19–9 as the most significant prognostic factor in locally advanced rectal cancer following neoadjuvant chemoradiotherapy. Medicine. 94, e1793 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
- 48.Song, J.Y., Chen, M.Q., Guo, J.H., Lian, S.F., Xu, B.H.: Combined pretreatment serum CA19-9 and neutrophil-to-lymphocyte ratio as a potential prognostic factor in metastatic pancreatic cancer patients. Medicine. 97, e9707 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
- 49.Heggelund, J.E., Varrot, A., Imberty, A., Krengel, U.: Histo-blood group antigens as mediators of infections. Curr. Opin. Struct. Biol. 44, 190–200 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
- 50.Beauharnois, M.E., Lindquist, K.C., Marathe, D., Vanderslice, P., Xia, J., Matta, K.L., Neelamegham, S.: Affinity and kinetics of sialyl Lewis-X and core-2 based oligosaccharides binding to L- and P-selectin. Biochem. 44, 9507–9519 (2005)CrossRefGoogle Scholar
- 51.Wu, A.M., Liu, J.H. : Lectins and ELLSA as powerful tools for Glycoconjugate recognition analyses, Glycoconj. J. in press (2019)Google Scholar