Advertisement

Organocatalyzed preparation of 1,4,5-trisubstituted-glycosyl-1,2,3-triazole derivatives

  • Monalisa Kundu
  • Ishani Bhaumik
  • Anup Kumar MisraEmail author
Original Article

Abstract

Organocatalytic coupling of glycosyl azides with enolates of active ketones and esters through azide-enolate [3 + 2] cycloaddition in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) furnished 1,4,5-trisubstituted-glycosyl-1,2,3-triazole derivatives in excellent yield. The reaction condition is simple and can be scaled-up.

Graphical abstract

Coupling of glycosyl azides with active ketones through azide-enolate [3 + 2] cycloaddition in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) furnished 1,4,5-trisubstituted-glycosyl-1,2,3-triazole derivatives in excellent yield.

Keywords

Carbohydrate; triazole Azide Organocatalysis Cycloaddition 

Notes

Acknowledgements

M.K. and I.B. thank CSIR, New Delhi for providing senior research fellowships. This work was supported by SERB, New Delhi (Project No. EMR/2015/000282) (AKM).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10719_2019_9883_MOESM1_ESM.pdf (9.9 mb)
ESM 1 (PDF 10142 kb)

References

  1. 1.
    Hein, E.H., Fokin, V.V.: Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem. Soc. Rev. 39, 1302–1315 (2010)CrossRefGoogle Scholar
  2. 2.
    Holub, J.M., Kirshenbaum, K.: Tricks with clicks: modification of peptidomimetic oligomers via copper-catalyzed azide-alkyne [3 + 2] cycloaddition. Chem. Soc. Rev. 39, 1325–1337 (2010)CrossRefGoogle Scholar
  3. 3.
    Sletten, E.M., Bertozzi, C.R.: From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions. Acc. Chem. Res. 44, 666–676 (2011)CrossRefGoogle Scholar
  4. 4.
    Kolb, H.C., Sharpless, K.B.: The growing impact of click chemistry on drug discovery. Drug Discovery Today. 8, 1128–1137 (2003)CrossRefGoogle Scholar
  5. 5.
    Wu, P., Feldman, A.K., Nugent, A.K., Hawker, C.J., Scheel, A., Voit, B., Pyun, J., Fré, J.M.J., Sharpless, K.B., Fokin, V.V.: Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper (i)-catalyzed ligation of azides and alkynes. Angew. Chem. Int. Ed. Engl. 43, 3928–3932 (2004)CrossRefGoogle Scholar
  6. 6.
    Saxon, E., Bertozzi, C.R.: Cell surface engineering by a modified Staudinger reaction. Science. 287, 2007–2010 (2000)CrossRefGoogle Scholar
  7. 7.
    Lee, B.S., Lee, J.K., Kim, W.J., Jung, Y.H., Sim, S.J., Lee, J., Choi, I.S.: Surface-Initiated, Atom Transfer Radical Polymerization of Oligo(ethylene glycol) Methyl Ether Methacrylate and Subsequent Click Chemistry for Bioconjugation. Biomacromolecules. 8, 744–749 (2007)CrossRefGoogle Scholar
  8. 8.
    Nandivada, H., Jiang, X., Lahann, J.: Click Chemistry: Versatility and Control in the Hands of Materials Scientists. Adv. Mater. 19, 2197–2208 (2007)CrossRefGoogle Scholar
  9. 9.
    Mamidyala, S.K., Finn, M.G.: In situ click chemistry: probing the binding landscapes of biological molecules. Chem. Soc. Rev. 39, 1252–1261 (2010)CrossRefGoogle Scholar
  10. 10.
    Jewett, J.C., Bertozzi, C.R.: Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010)CrossRefGoogle Scholar
  11. 11.
    Astruc, D., Liang, L., Rapakousiou, A., Ruiz, J.: Click Dendrimers and Triazole-Related Aspects: Catalysts, Mechanism, Synthesis, and Functions. A Bridge between Dendritic Architectures and Nanomaterials. Acc. Chem. Res. 45, 630–640 (2012)CrossRefGoogle Scholar
  12. 12.
    Días, D.D., Rajagopal, K., Strable, E., Schneider, J., Finn, M.G.: "Click" chemistry in a supramolecular environment: stabilization of organogels by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 128, 6056–6057 (2006)CrossRefGoogle Scholar
  13. 13.
    Font, D., Bastero, A., Sayalero, S., Jimeno, C., Pericàs, M.A.: Highly Enantioselective α-Aminoxylation of Aldehydes and Ketones with a Polymer-Supported Organocatalyst. Org. Lett. 9, 1943–1946 (2007)CrossRefGoogle Scholar
  14. 14.
    Debets, M.F., van Berkel, S.S., Dommerholt, J., Dirks, A.J., Rutjes, F.P.J.T., van Delft, F.L.: Bioconjugation with Strained Alkenes and Alkynes. Acc. Chem. Res. 44, 805–815 (2011)CrossRefGoogle Scholar
  15. 15.
    Hong, V., Presolski, S.I., Ma, C., Finn, M.G.: Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed. 48, 9879–9883 (2009)CrossRefGoogle Scholar
  16. 16.
    1,3-Dipolar Cycloaddition Chemistry, Padwa, A. Ed. Wiley, New York, (1984).Google Scholar
  17. 17.
    Fan, W.-Q., Katritzky, A.R., Rees, C.W., Scriven, E.F.V.: Comprehensive Heterocyclic Chemistry II. Pergamon, Oxford (1996)Google Scholar
  18. 18.
    Wilkinson, B.L., Bornaghi, L.F., Poulsen, S.-A., Houston, T.A.: Synthetic utility of glycosyl triazoles in carbohydrate chemistry. Tetrahedron. 62, 8115–8125 (2006)CrossRefGoogle Scholar
  19. 19.
    Aragão-Leoneti, V., Campo, V.L., Gomes, A.S., Field, R.A., Carvalho, I.: Application of copper(I)-catalysed azide/alkyne cycloaddition (CuAAC) ‘click chemistry’ in carbohydrate drug and neoglycopolymer synthesis. Tetrahedron. 66, 9475–9492 (2010)CrossRefGoogle Scholar
  20. 20.
    Amblard, F., Cho, J.H., Schinazi, R.F.: Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem. Rev. 109, 4207–4220 (2009)CrossRefGoogle Scholar
  21. 21.
    de Rocha, D.R., Santos, W.C., Lima, E.S., Ferreira, V.F.: Synthesis of 1,2,3-triazole glycoconjugates as inhibitors of α-glucosidases. Carbohydr. Res. 350, 14–19 (2012)CrossRefGoogle Scholar
  22. 22.
    dos Anjos, J.V., Neves Filho, R.A.W., do Nascimento, S.C., Srivastava, R.M., de melo, S.J., Sinou, D.: Synthesis and cytotoxic profile of glycosyl-triazole linked to 1,2,4-oxadiazole moiety at C-5 through a straight-chain carbon and oxygen atoms. Eur. J. Med. Chem. 44, 3571–3576 (2009)CrossRefGoogle Scholar
  23. 23.
    Bokor, É., Docsa, T., Gergely, P., Somsák, L.: C-glucopyranosyl-1,2,4-triazoles as new potent inhibitors of glycogen phosphorylase. ACS Med. Chem. Lett. 4, 612–615 (2013)CrossRefGoogle Scholar
  24. 24.
    Wilkinson, B.L., Bornaghi, L.F., Houston, T.A., Innocenti, A., Vullo, D., Supuran, C.T., Poulsen, S.-A.: Carbonic Anhydrase Inhibitors: Inhibition of Isozymes I, II, and IX with Triazole-Linked O-Glycosides of Benzene Sulfonamides. J. Med. Chem. 50, 1651–1657 (2007)CrossRefGoogle Scholar
  25. 25.
    Kuhn, H., Gutelius, D., Black, E., Nadolny, C., Basu, A., Reid, C.: Anti-bacterial glycosyl triazoles – identification of an N-acetylglucosamine derivative with bacteriostatic activity against Bacillus. Medchemcomm. 5, 1213–1217 (2014)CrossRefGoogle Scholar
  26. 26.
    Carvalho, I., Andrade, P., Campo, V.L., Guedes, P.M., Sesti-Costa, R., Silva, J.S., Schenkman, S., Dedola, S., Hill, L., Rejzek, M., Nepogodiev, S.A., Field, R.A.: 'Click chemistry' synthesis of a library of 1,2,3-triazole-substituted galactose derivatives and their evaluation against Trypanosoma cruzi and its cell surface trans-sialidase. Bioorg. Med. Chem. 18, 2412–2427 (2010)CrossRefGoogle Scholar
  27. 27.
    Wilkinson, B.L., Long, H., Sim, E., Fairbanks, A.J.: Synthesis of Arabino glycosyl triazoles as potential inhibitors of mycobacterial cell wall biosynthesis. Bioor. Med. Chem. Lett. 18, 6265–6267 (2008)CrossRefGoogle Scholar
  28. 28.
    Tonks, N.K.: Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 7, 833–846 (2006)CrossRefGoogle Scholar
  29. 29.
    He, X.-P., Xie, J., Tang, Y., Li, J., Chen, G.-R.: CuAAC Click Chemistry Accelerates the Discovery of Novel Chemical Scaffolds as Promising Protein Tyrosine Phosphatases Inhibitors. Curr. Med. Chem. 19, 2399–2405 (2012)CrossRefGoogle Scholar
  30. 30.
    Tiwari, V.K., Mishra, B.B., Mishra, K.B., Mishra, N., Singh, A.S., Chen, X.: Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chem. Rev. 116, 3086–3240 (2016)CrossRefGoogle Scholar
  31. 31.
    He, X.-P., Zeng, Y.-L., Zang, Y., Li, J., Field, R.A., Chen, G.-R.: Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr. Res. 429, 1–22 (2016)CrossRefGoogle Scholar
  32. 32.
    Shashank, A.B., Karthik, S., Madhavachary, R., Ramachary, D.B.: An Enolate-Mediated Organocatalytic Azide–Ketone [3+2]-Cycloaddition Reaction: Regioselective High-Yielding Synthesis of Fully Decorated 1,2,3-Triazoles. Chem. Eur. J. 20, 16877–16881 (2014)CrossRefGoogle Scholar
  33. 33.
    Singh, H., Sindhu, J., Khurana, J.M.: Synthesis of biologically as well as industrially important 1,4,5-trisubstituted-1,2,3-triazoles using a highly efficient, green and recyclable DBU–H2O catalytic system. RSC Adv. 3, 22360–22366 (2013)CrossRefGoogle Scholar
  34. 34.
    Kamalraj, V.R., Senthil, S., Kannan, P.: One-pot synthesis and the fluorescent behavior of 4-acetyl-5-methyl-1,2,3-triazole regioisomers. J. Mol. Struc. 892, 210–215 (2008)CrossRefGoogle Scholar
  35. 35.
    John, J., Thomas, J., Dehaen, W.: Organocatalytic routes toward substituted 1,2,3-triazoles. Chem. Commun. 51, 10797–10806 (2015)CrossRefGoogle Scholar
  36. 36.
    Ramasastry, S.S.: Enamine/enolate-mediated organocatalytic azide-carbonyl [3+2] cycloaddition reactions for the synthesis of densely functionalized 1,2,3-triazoles. Angew. Chem. Int. Ed. Engl. 53, 14310–14312 (2014)CrossRefGoogle Scholar
  37. 37.
    Jin, G., Zhang, J., Fu, D., Wu, J., Cao, S.: One-Pot, Three-Component Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles Starting from Primary Alcohols. Eur. J. Org. Chem. 5446–5449 (2012)Google Scholar
  38. 38.
    González-Calderón, D., Aguirre-De Paz, J.G., González- González, C.A., Fuentes-Benites, A., González-Romero, C.: A straightforward and versatile approach to the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles from alkyl halides via a one-pot, three-component reaction. Tetrahedron Lett. 56, 1713–1715 (2015)CrossRefGoogle Scholar
  39. 39.
    Da Silva, F.C., De Souza, M.C.B.V., Frugulhetti, I.I.P., Castro, H.C., Souza, S.L., DeSouza, T.M.L., Rodrigues, D.Q., Souza, A.M.T., Abreu, P.A., Passamani, F., Rodrigues, C.R., Ferreira, V.F.: Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur. J. Med. Chem. 44, 373–383 (2009)CrossRefGoogle Scholar
  40. 40.
    Kumar, R., Maulik, P.R., Misra, A.K.: Significant rate accelerated synthesis of glycosyl azides and glycosyl 1,2,3-triazole conjugates. Glycoconj. J. 25, 595–602 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Monalisa Kundu
    • 1
  • Ishani Bhaumik
    • 1
  • Anup Kumar Misra
    • 1
    Email author
  1. 1.Division of Molecular MedicineBose InstituteKolkataIndia

Personalised recommendations