Glycoconjugate Journal

, Volume 36, Issue 4, pp 241–257 | Cite as

“Stuck on sugars – how carbohydrates regulate cell adhesion, recognition, and signaling”

  • Richard D. CummingsEmail author
Original Article


We have explored the fundamental biological processes by which complex carbohydrates expressed on cellular glycoproteins and glycolipids and in secretions of cells promote cell adhesion and signaling. We have also explored processes by which animal pathogens, such as viruses, bacteria, and parasites adhere to glycans of animal cells and initiate disease. Glycans important in cell signaling and adhesion, such as key O-glycans, are essential for proper animal development and cellular differentiation, but they are also involved in many pathogenic processes, including inflammation, tumorigenesis and metastasis, and microbial and parasitic pathogenesis. The overall hypothesis guiding these studies is that glycoconjugates are recognized and bound by a growing class of proteins called glycan-binding proteins (GBPs or lectins) expressed by all types of cells. There is an incredible variety and diversity of GBPs in animal cells involved in binding N- and O-glycans, glycosphingolipids, and proteoglycan/glycosaminoglycans. We have specifically studied such molecular determinants recognized by selectins, galectins, and many other C-type lectins, involved in leukocyte recruitment to sites of inflammation in human tissues, lymphocyte trafficking, adhesion of human viruses to human cells, structure and immunogenicity of glycoproteins on the surfaces of human parasites. We have also explored the molecular basis of glycoconjugate biosynthesis by exploring the enzymes and molecular chaperones required for correct protein glycosylation. From these studies opportunities for translational biology have arisen, involving production of function-blocking antibodies, anti-glycan specific antibodies, and synthetic glycoconjugates, e.g. glycosulfopeptides, that specifically are recognized by GBPs. This invited short review is based in part on my presentation for the IGO Award 2019 given by the International Glycoconjugate Organization in Milan.


Glycoproteins Glycomics Selectins Cosmc T-synthase Inflammation Parasites Glycobiology Antibodies Immunity 



I would like to thank Jamie Heimburg-Molinaro and Sandra Cummings for thoughtful reading and editing of this manuscript. The work of the author over the years has been supported by various funding agencies, including most recently NIH Grants R01AG062181, P41GM103694, and R01AI101982 to RDC, Gates Foundation OPP1152154, OPP1151840 to RDC, and support to RDC by the U.S. Department of Health and Human Services contract HHSN272201400004C (NIAID Centers of Excellence for Influenza Research and Surveillance).

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.


  1. 1.
    Cummings, R.D., Schnaar, R.L., Esko, J.D., Drickamer, K., Taylor, M.E.: Principles of glycan recognition. In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Essentials of Glycobiology, pp. 373–385. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)Google Scholar
  2. 2.
    Thompson, A.J., de Vries, R.P., Paulson, J.C.: Virus recognition of glycan receptors. Curr Opin Virol. 34, 117–129 (2019)Google Scholar
  3. 3.
    Kaltner, H., Toegel, S., Caballero, G.G., Manning, J.C., Ledeen, R.W., Gabius, H.J.: Galectins: their network and roles in immunity/tumor growth control. Histochem. Cell Biol. 147(2), 239–256 (2017)Google Scholar
  4. 4.
    Johannes, L., Jacob, R., Leffler, H.: Galectins at a glance. J. Cell Sci. 131(9), (2018)Google Scholar
  5. 5.
    Mendez-Huergo, S.P., Blidner, A.G., Rabinovich, G.A.: Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis. Curr. Opin. Immunol. 45, 8–15 (2017)Google Scholar
  6. 6.
    Varki, A., Schnaar, R.L., Crocker, P.R.: I-type lectins. In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Essentials of Glycobiology, pp. 453–467. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)Google Scholar
  7. 7.
    Cummings, R.D., McEver, R.P.: C-type lectins. In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Essentials of Glycobiology, pp. 435–452. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)Google Scholar
  8. 8.
    Imberty, A., H Prestegard, J.: Structural biology of glycan recognition. In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Essentials of Glycobiology, pp. 387–400. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)Google Scholar
  9. 9.
    Freeze, H.H., Baum, L., Varki, A.: Glycans in systemic physiology. In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Essentials of Glycobiology, pp. 521–526. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)Google Scholar
  10. 10.
    Cummings, R.D., Pierce, J.M.: The challenge and promise of glycomics. Chem. Biol. 21(1), 1–15 (2014)Google Scholar
  11. 11.
    McEver, R.P.: Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc. Res. 107(3), 331–339 (2015)Google Scholar
  12. 12.
    McEver, R.P., Cummings, R.D.: Perspectives series: cell adhesion in vascular biology. Role of PSGL-1 binding to selectins in leukocyte recruitment. J. Clin. Invest. 100(3), 485–491 (1997)Google Scholar
  13. 13.
    Gesner, B.M., Ginsburg, V.: Effect of Glycosidases on the fate of transfused lymphocytes. Proc. Natl. Acad. Sci. U. S. A. 52, 750–755 (1964)Google Scholar
  14. 14.
    Rosen, S.D., Bertozzi, C.R.: The selectins and their ligands. Curr. Opin. Cell Biol. 6(5), 663–673 (1994)Google Scholar
  15. 15.
    Fukuda, M., Hiraoka, N., Yeh, J.C.: C-type lectins and sialyl Lewis X oligosaccharides. Versatile roles in cell-cell interaction. J. Cell Biol. 147(3), 467–470 (1999)Google Scholar
  16. 16.
    Zhou, Q., Moore, K.L., Smith, D.F., Varki, A., McEver, R.P., Cummings, R.D.: The selectin GMP-140 binds to sialylated, fucosylated lactosaminoglycans on both myeloid and nonmyeloid cells. J. Cell Biol. 115(2), 557–564 (1991)Google Scholar
  17. 17.
    Moore, K.L., Stults, N.L., Diaz, S., Smith, D.F., Cummings, R.D., Varki, A., McEver, R.P.: Identification of a specific glycoprotein ligand for P-selectin(CD62) on myeloid cells. J. Cell Biol. 118(2), 445–456 (1992)Google Scholar
  18. 18.
    Moore, K.L., Eaton, S.F., Lyons, D.E., Lichenstein, H.S., Cummings, R.D., McEver, R.P.: The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, O-linked poly-N-acetyllactosamine. J. Biol. Chem. 269(37), 23318–23327 (1994)Google Scholar
  19. 19.
    Sako, D., Chang, X.J., Barone, K.M., Vachino, G., White, H.M., Shaw, G., Veldman, G.M., Bean, K.M., Ahern, T.J., Furie, B., et al.: Expression cloning of a functional glycoprotein ligand for P-selectin. Cell. 75(6), 1179–1186 (1993)Google Scholar
  20. 20.
    Wilkins, P.P., McEver, R.P., Cummings, R.D.: Structures of the O-glycans on P-selectin glycoprotein ligand-1 from HL-60 cells. J. Biol. Chem. 271(31), 18732–18742 (1996)Google Scholar
  21. 21.
    Wilkins, P.P., Moore, K.L., McEver, R.P., Cummings, R.D.: Tyrosine sulfation of P-selectin glycoprotein ligand-1 is required for high affinity binding to P-selectin. J. Biol. Chem. 270(39), 22677–22680 (1995)Google Scholar
  22. 22.
    De Luca, M., Dunlop, L.C., Andrews, R.K., Flannery Jr., J.V., Ettling, R., Cumming, D.A., Veldman, G.M., Berndt, M.C.: A novel cobra venom metalloproteinase, mocarhagin, cleaves a 10-amino acid peptide from the mature N terminus of P-selectin glycoprotein ligand receptor, PSGL-1, and abolishes P-selectin binding. J. Biol. Chem. 270(45), 26734–26737 (1995)Google Scholar
  23. 23.
    Li, F., Wilkins, P.P., Crawley, S., Weinstein, J., Cummings, R.D., McEver, R.P.: Post-translational modifications of recombinant P-selectin glycoprotein ligand-1 required for binding to P- and E-selectin. J. Biol. Chem. 271(6), 3255–3264 (1996)Google Scholar
  24. 24.
    Pouyani, T., Seed, B.: PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus. Cell. 83(2), 333–343 (1995)Google Scholar
  25. 25.
    Sako, D., Comess, K.M., Barone, K.M., Camphausen, R.T., Cumming, D.A., Shaw, G.D.: A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding. Cell. 83(2), 323–331 (1995)Google Scholar
  26. 26.
    Epperson, T.K., Patel, K.D., McEver, R.P., Cummings, R.D.: Noncovalent association of P-selectin glycoprotein ligand-1 and minimal determinants for binding to P-selectin. J. Biol. Chem. 275(11), 7839–7853 (2000)Google Scholar
  27. 27.
    Ouyang, Y., Lane, W.S., Moore, K.L.: Tyrosylprotein sulfotransferase: purification and molecular cloning of an enzyme that catalyzes tyrosine O-sulfation, a common posttranslational modification of eukaryotic proteins. Proc. Natl. Acad. Sci. U. S. A. 95(6), 2896–2901 (1998)Google Scholar
  28. 28.
    Ju, T., Brewer, K., D'Souza, A., Cummings, R.D., Canfield, W.M.: Cloning and expression of human core 1 beta1,3-galactosyltransferase. J. Biol. Chem. 277(1), 178–186 (2002)Google Scholar
  29. 29.
    Ju, T., Cummings, R.D., Canfield, W.M.: Purification, characterization, and subunit structure of rat core 1 Beta1,3-galactosyltransferase. J. Biol. Chem. 277(1), 169–177 (2002)Google Scholar
  30. 30.
    Leppanen, A., Mehta, P., Ouyang, Y.B., Ju, T., Helin, J., Moore, K.L., van Die, I., Canfield, W.M., McEver, R.P., Cummings, R.D.: A novel glycosulfopeptide binds to P-selectin and inhibits leukocyte adhesion to P-selectin. J. Biol. Chem. 274(35), 24838–24848 (1999)Google Scholar
  31. 31.
    Leppanen, A., Penttila, L., Renkonen, O., McEver, R.P., Cummings, R.D.: Glycosulfopeptides with O-glycans containing sialylated and polyfucosylated polylactosamine bind with low affinity to P-selectin. J. Biol. Chem. 277(42), 39749–39759 (2002)Google Scholar
  32. 32.
    Leppanen, A., White, S.P., Helin, J., McEver, R.P., Cummings, R.D.: Binding of glycosulfopeptides to P-selectin requires stereospecific contributions of individual tyrosine sulfate and sugar residues. J. Biol. Chem. 275(50), 39569–39578 (2000)Google Scholar
  33. 33.
    Leppanen, A., Yago, T., Otto, V.I., McEver, R.P., Cummings, R.D.: Model glycosulfopeptides from P-selectin glycoprotein ligand-1 require tyrosine sulfation and a core 2-branched O-glycan to bind to L-selectin. J. Biol. Chem. 278(29), 26391–26400 (2003)Google Scholar
  34. 34.
    Somers, W.S., Tang, J., Shaw, G.D., Camphausen, R.T.: Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell. 103(3), 467–479 (2000)Google Scholar
  35. 35.
    Krishnamurthy, V.R., Sardar, M.Y., Ying, Y., Song, X., Haller, C., Dai, E., Wang, X., Hanjaya-Putra, D., Sun, L., Morikis, V., Simon, S.I., Woods, R.J., Cummings, R.D., Chaikof, E.L.: Glycopeptide analogues of PSGL-1 inhibit P-selectinin vitro and in vivo. Nat. Commun. 6(6387), (2015)Google Scholar
  36. 36.
    Krishnamurthy, V.R., Dougherty, A., Kamat, M., Song, X., Cummings, R.D., Chaikof, E.L.: Synthesis of an Fmoc-threonine bearing core-2 glycan: a building block for PSGL-1 via Fmoc-assisted solid-phase peptide synthesis. Carbohydr. Res. 345(11), 1541–1547 (2010)Google Scholar
  37. 37.
    Sardar, M.Y.R., Krishnamurthy, V.R., Park, S., Mandhapati, A.R., Wever, W.J., Park, D., Cummings, R.D., Chaikof, E.L.: Synthesis of Lewis(X)-O-Core-1 threonine: a building block for O-linked Lewis(X) glycopeptides. Carbohydr. Res. 452, 47–53 (2017)Google Scholar
  38. 38.
    Sardar, M.Y.R., Mandhapati, A.R., Park, S., Wever, W.J., Cummings, R.D., Chaikof, E.L.: Convergent synthesis of Sialyl Lewis(X)- O-Core-1 threonine. J. Organomet. Chem. 83(9), 4963–4972 (2018)Google Scholar
  39. 39.
    Wun, T., Styles, L., DeCastro, L., Telen, M.J., Kuypers, F., Cheung, A., Kramer, W., Flanner, H., Rhee, S., Magnani, J.L., Thackray, H.: Phase 1 study of the E-selectin inhibitor GMI 1070 in patients with sickle cell anemia. PLoS One. 9(7), e101301 (2014)Google Scholar
  40. 40.
    Telen, M.J., Wun, T., McCavit, T.L., De Castro, L.M., Krishnamurti, L., Lanzkron, S., Hsu, L.L., Smith, W.R., Rhee, S., Magnani, J.L., Thackray, H.: Randomized phase 2 study of GMI-1070 in SCD: reduction in time to resolution of vaso-occlusive events and decreased opioid use. Blood. 125(17), 2656–2664 (2015)Google Scholar
  41. 41.
    Schwizer, D., Patton, J.T., Cutting, B., Smiesko, M., Wagner, B., Kato, A., Weckerle, C., Binder, F.P., Rabbani, S., Schwardt, O., Magnani, J.L., Ernst, B.: Pre-organization of the core structure of E-selectin antagonists. Chemistry. 18(5), 1342–1351 (2012)Google Scholar
  42. 42.
    Laird, C.T., Hassanein, W., O'Neill, N.A., French, B.M., Cheng, X., Fogler, W.E., Magnani, J.L., Parsell, D., Cimeno, A., Phelps, C.J., Ayares, D., Burdorf, L., Azimzadeh, A.M., Pierson 3rd, R.N.: P- and E-selectin receptor antagonism prevents human leukocyte adhesion to activated porcine endothelial monolayers and attenuates porcine endothelial damage. Xenotransplantation. 25(2), e12381 (2018)Google Scholar
  43. 43.
    Esposito, M., Mondal, N., Greco, T.M., Wei, Y., Spadazzi, C., Lin, S.C., Zheng, H., Cheung, C., Magnani, J.L., Lin, S.H., Cristea, I.M., Sackstein, R., Kang, Y.: Bone vascular niche E-selectin induces mesenchymal-epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nat. Cell Biol. 21(5), 627–639 (2019)Google Scholar
  44. 44.
    Chang, J., Patton, J.T., Sarkar, A., Ernst, B., Magnani, J.L., Frenette, P.S.: GMI-1070, a novel pan-selectin antagonist, reverses acute vascular occlusions in sickle cell mice. Blood. 116(10), 1779–1786 (2010)Google Scholar
  45. 45.
    Kutlar, A., Kanter, J., Liles, D.K., Alvarez, O.A., Cancado, R.D., Friedrisch, J.R., Knight-Madden, J.M., Bruederle, A., Shi, M., Zhu, Z., Ataga, K.I.: Effect of crizanlizumab on pain crises in subgroups of patients with sickle cell disease: a SUSTAIN study analysis. Am. J. Hematol. 94(1), 55–61 (2019)Google Scholar
  46. 46.
    Ataga, K.I., Kutlar, A., Kanter, J., Liles, D., Cancado, R., Friedrisch, J., Guthrie, T.H., Knight-Madden, J., Alvarez, O.A., Gordeuk, V.R., Gualandro, S., Colella, M.P., Smith, W.R., Rollins, S.A., Stocker, J.W., Rother, R.P.: Crizanlizumab for the prevention of pain crises in sickle cell disease. N. Engl. J. Med. 376(5), 429–439 (2017)Google Scholar
  47. 47.
    Carlow, D.A., Gossens, K., Naus, S., Veerman, K.M., Seo, W., Ziltener, H.J.: PSGL-1 function in immunity and steady state homeostasis. Immunol. Rev. 230(1), 75–96 (2009)Google Scholar
  48. 48.
    Veerman, K.M., Carlow, D.A., Shanina, I., Priatel, J.J., Horwitz, M.S., Ziltener, H.J.: PSGL-1 regulates the migration and proliferation of CD8(+) T cells under homeostatic conditions. J. Immunol. 188(4), 1638–1646 (2012)Google Scholar
  49. 49.
    Veerman, K.M., Williams, M.J., Uchimura, K., Singer, M.S., Merzaban, J.S., Naus, S., Carlow, D.A., Owen, P., Rivera-Nieves, J., Rosen, S.D., Ziltener, H.J.: Interaction of the selectin ligand PSGL-1 with chemokines CCL21 and CCL19 facilitates efficient homing of T cells to secondary lymphoid organs. Nat. Immunol. 8(5), 532–539 (2007)Google Scholar
  50. 50.
    Bannert, N., Craig, S., Farzan, M., Sogah, D., Santo, N.V., Choe, H., Sodroski, J.: Sialylated O-glycans and sulfated tyrosines in the NH2-terminal domain of CC chemokine receptor 5 contribute to high affinity binding of chemokines. J. Exp. Med. 194(11), 1661–1673 (2001)Google Scholar
  51. 51.
    Kato, Y., Kaneko, M.K., Kunita, A., Ito, H., Kameyama, A., Ogasawara, S., Matsuura, N., Hasegawa, Y., Suzuki-Inoue, K., Inoue, O., Ozaki, Y., Narimatsu, H.: Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Sci. 99(1), 54–61 (2008)Google Scholar
  52. 52.
    Furukawa, A., Kakita, K., Yamada, T., Ishizuka, M., Sakamoto, J., Hatori, N., Maeda, N., Ohsaka, F., Saitoh, T., Nomura, T., Kuroki, K., Nambu, H., Arase, H., Matsunaga, S., Anada, M., Ose, T., Hashimoto, S., Maenaka, K.: Structural and thermodynamic analyses reveal critical features of glycopeptide recognition by the human PILRalpha immune cell receptor. J. Biol. Chem. 292(51), 21128–21136 (2017)Google Scholar
  53. 53.
    Kuroki, K., Wang, J., Ose, T., Yamaguchi, M., Tabata, S., Maita, N., Nakamura, S., Kajikawa, M., Kogure, A., Satoh, T., Arase, H., Maenaka, K.: Structural basis for simultaneous recognition of an O-glycan and its attached peptide of mucin family by immune receptor PILRalpha. Proc. Natl. Acad. Sci. U. S. A. 111(24), 8877–8882 (2014)Google Scholar
  54. 54.
    Toleman, C.A., Schumacher, M.A., Yu, S.H., Zeng, W., Cox, N.J., Smith, T.J., Soderblom, E.J., Wands, A.M., Kohler, J.J., Boyce, M.: Structural basis of O-GlcNAc recognition by mammalian 14-3-3 proteins. Proc. Natl. Acad. Sci. U. S. A. 115(23), 5956–5961 (2018)Google Scholar
  55. 55.
    Raman, J., Fritz, T.A., Gerken, T.A., Jamison, O., Live, D., Liu, M., Tabak, L.A.: The catalytic and lectin domains of UDP-GalNAc:polypeptide alpha-N-Acetylgalactosaminyltransferase function in concert to direct glycosylation site selection. J. Biol. Chem. 283(34), 22942–22951 (2008)Google Scholar
  56. 56.
    Bhide, G.P., Prehna, G., Ramirez, B.E., Colley, K.J.: The polybasic region of the Polysialyltransferase ST8Sia-IV binds directly to the neural cell adhesion molecule, NCAM. Biochemistry. 56(10), 1504–1517 (2017)Google Scholar
  57. 57.
    Mengeling, B.J., Manzella, S.M., Baenziger, J.U.: A cluster of basic amino acids within an alpha-helix is essential for alpha-subunit recognition by the glycoprotein hormone N-acetylgalactosaminyltransferase. Proc. Natl. Acad. Sci. U. S. A. 92(2), 502–506 (1995)Google Scholar
  58. 58.
    van Meel, E., Lee, W.S., Liu, L., Qian, Y., Doray, B., Kornfeld, S.: Multiple domains of GlcNAc-1-phosphotransferase mediate recognition of lysosomal enzymes. J. Biol. Chem. 291(15), 8295–8307 (2016)Google Scholar
  59. 59.
    Nowell, P.C.: Phytohemagglutinin: an initiator of mitosis in cultures of normal human leukocytes. Cancer Res. 20, 462–466 (1960)Google Scholar
  60. 60.
    Cummings, R.D., Kornfeld, S.: Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins. J. Biol. Chem. 257(19), 11230–11234 (1982)Google Scholar
  61. 61.
    Hammarstrom, S., Hammarstrom, M.L., Sundblad, G., Arnarp, J., Lonngren, J.: Mitogenic leukoagglutinin from Phaseolus vulgaris binds to a pentasaccharide unit in N-acetyllactosamine-type glycoprotein glycans. Proc. Natl. Acad. Sci. U. S. A. 79(5), 1611–1615 (1982)Google Scholar
  62. 62.
    Cummings, R.D., Trowbridge, I.S., Kornfeld, S.: A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc: alpha-D-mannoside beta 1,6 N-acetylglucosaminyltransferase. J. Biol. Chem. 257(22), 13421–13427 (1982)Google Scholar
  63. 63.
    Chaney, W., Sundaram, S., Friedman, N., Stanley, P.: The Lec4A CHO glycosylation mutant arises from miscompartmentalization of a Golgi glycosyltransferase. J. Cell Biol. 109(5), 2089–2096 (1989)Google Scholar
  64. 64.
    Stanley, P., Ioffe, E.: Glycosyltransferase mutants: key to new insights in glycobiology. FASEB J. 9(14), 1436–1444 (1995)Google Scholar
  65. 65.
    Granovsky, M., Fata, J., Pawling, J., Muller, W.J., Khokha, R., Dennis, J.W.: Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat. Med. 6(3), 306–312 (2000)Google Scholar
  66. 66.
    Shoreibah, M.G., Hindsgaul, O., Pierce, M.: Purification and characterization of rat kidney UDP-N-acetylglucosamine: alpha-6-D-mannoside beta-1,6-N-acetylglucosaminyltransferase. J. Biol. Chem. 267(5), 2920–2927 (1992)Google Scholar
  67. 67.
    Shoreibah, M., Perng, G.S., Adler, B., Weinstein, J., Basu, R., Cupples, R., Wen, D., Browne, J.K., Buckhaults, P., Fregien, N., Pierce, M.: Isolation, characterization, and expression of a cDNA encoding N-acetylglucosaminyltransferase V. J. Biol. Chem. 268(21), 15381–15385 (1993)Google Scholar
  68. 68.
    Gao, C., Hanes, M.S., Byrd-Leotis, L.A., Wei, M., Jia, N., Kardish, R.J., McKitrick, T.R., Steinhauer, D.A., Cummings, R.D.: Unique binding specificities of proteins toward isomeric asparagine-linked Glycans. Cell Chem Biol. 26(4), 535–547 e534 (2019)Google Scholar
  69. 69.
    Kornfeld, K., Reitman, M.L., Kornfeld, R.: The carbohydrate-binding specificity of pea and lentil lectins. Fucose is an important determinant. J. Biol. Chem. 256(13), 6633–6640 (1981)Google Scholar
  70. 70.
    Kornfeld, R., Ferris, C.: Interaction of immunoglobulin glycopeptides with concanavalin a. J. Biol. Chem. 250(7), 2614–2619 (1975)Google Scholar
  71. 71.
    Chen, Y.F., Boland, C.R., Kraus, E.R., Goldstein, I.J.: The lectin Griffonia simplicifolia I-A4(GS I-A4) specifically recognizes terminal alpha-linked N-acetylgalactosaminyl groups and is cytotoxic to the human colon cancer cell lines LS174t and SW1116. Int. J. Cancer. 57(4), 561–567 (1994)Google Scholar
  72. 72.
    Ogata, S., Muramatsu, T., Kobata, A.: Fractionation of glycopeptides by affinity column chromatography on concanavalin A-sepharose. J. Biochem. 78(4), 687–696 (1975)Google Scholar
  73. 73.
    Baenziger, J.U., Fiete, D.: Structural determinants of concanavalin a specificity for oligosaccharides. J. Biol. Chem. 254(7), 2400–2407 (1979)Google Scholar
  74. 74.
    Baenziger, J.U., Fiete, D.: Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J. Biol. Chem. 254(19), 9795–9799 (1979)Google Scholar
  75. 75.
    Shibuya, N., Goldstein, I.J., Broekaert, W.F., Nsimba-Lubaki, M., Peeters, B., Peumans, W.J.: The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)gal/GalNAc sequence. J. Biol. Chem. 262(4), 1596–1601 (1987)Google Scholar
  76. 76.
    Shibuya, N., Goldstein, I.J., Broekaert, W.F., Nsimba-Lubaki, M., Peeters, B., Peumans, W.J.: Fractionation of sialylated oligosaccharides, glycopeptides, and glycoproteins on immobilized elderberry (Sambucus nigra L.) bark lectin. Arch. Biochem. Biophys. 254(1), 1–8 (1987)Google Scholar
  77. 77.
    Cummings, R.D., Kornfeld, S.: Fractionation of asparagine-linked oligosaccharides by serial lectin-agarose affinity chromatography. A rapid, sensitive, and specific technique. J. Biol. Chem. 257(19), 11235–11240 (1982)Google Scholar
  78. 78.
    Cummings, R.D., Merkle, R.K., Stults, N.L.: Separation and analysis of glycoprotein oligosaccharides. Methods Cell Biol. 32, 141–183 (1989)Google Scholar
  79. 79.
    Merkle, R.K., Cummings, R.D.: Lectin affinity chromatography of glycopeptides. Methods Enzymol. 138, 232–259 (1987)Google Scholar
  80. 80.
    Merkle, R.K., Cummings, R.D.: Asparagine-linked oligosaccharides containing poly-N-acetyllactosamine chains are preferentially bound by immobilized calf heart agglutinin. J. Biol. Chem. 263(31), 16143–16149 (1988)Google Scholar
  81. 81.
    Wang, W.C., Cummings, R.D.: The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked alpha-2,3 to penultimate galactose residues. J. Biol. Chem. 263(10), 4576–4585 (1988)Google Scholar
  82. 82.
    Cummings, R.D., Kornfeld, S.: The distribution of repeating [gal beta 1,4GlcNAc beta 1,3] sequences in asparagine-linked oligosaccharides of the mouse lymphoma cell lines BW5147 and PHAR 2.1. J. Biol. Chem. 259(10), 6253–6260 (1984)Google Scholar
  83. 83.
    Patnaik, S.K., Stanley, P.: Lectin-resistant CHO glycosylation mutants. Methods Enzymol. 416, 159–182 (2006)Google Scholar
  84. 84.
    Stanley, P.: Lectin-resistant CHO cells: selection of new mutant phenotypes. Somatic Cell Genet. 9(5), 593–608 (1983)Google Scholar
  85. 85.
    Novogrodsky, A., Ashwell, G.: Lymphocyte mitogenesis induced by a mammalian liver protein that specifically binds desialylated glycoproteins. Proc. Natl. Acad. Sci. U. S. A. 74(2), 676–678 (1977)Google Scholar
  86. 86.
    Pitts, M.J., Yang, D.C.: Mitogenicity and binding properties of beta-galactoside-binding lectin from chick-embryo kidney. Biochem. J. 195(2), 435–439 (1981)Google Scholar
  87. 87.
    Perillo, N.L., Pace, K.E., Seilhamer, J.J., Baum, L.G.: Apoptosis of T cells mediated by galectin-1. Nature. 378(6558), 736–739 (1995)Google Scholar
  88. 88.
    Perillo, N.L., Marcus, M.E., Baum, L.G.: Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J Mol Med (Berl). 76(6), 402–412 (1998)Google Scholar
  89. 89.
    Dias-Baruffi, M., Zhu, H., Cho, M., Karmakar, S., McEver, R.P., Cummings, R.D.: Dimeric galectin-1 induces surface exposure of phosphatidylserine and phagocytic recognition of leukocytes without inducing apoptosis. J. Biol. Chem. 278(42), 41282–41293 (2003)Google Scholar
  90. 90.
    Stowell, S.R., Qian, Y., Karmakar, S., Koyama, N.S., Dias-Baruffi, M., Leffler, H., McEver, R.P., Cummings, R.D.: Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J. Immunol. 180(5), 3091–3102 (2008)Google Scholar
  91. 91.
    Karmakar, S., Stowell, S.R., Cummings, R.D., McEver, R.P.: Galectin-1 signaling in leukocytes requires expression of complex-type N-glycans. Glycobiology. 18(10), 770–778 (2008)Google Scholar
  92. 92.
    Karmakar, S., Cummings, R.D., McEver, R.P.: Contributions of Ca2+ to galectin-1-induced exposure of phosphatidylserine on activated neutrophils. J. Biol. Chem. 280(31), 28623–28631 (2005)Google Scholar
  93. 93.
    Stowell, S.R., Karmakar, S., Stowell, C.J., Dias-Baruffi, M., McEver, R.P., Cummings, R.D.: Human galectin-1, −2, and −4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells. Blood. 109(1), 219–227 (2007)Google Scholar
  94. 94.
    Liu, F.T., Hsu, D.K., Zuberi, R.I., Kuwabara, I., Chi, E.Y., Henderson Jr., W.R.: Expression and function of galectin-3, a beta-galactoside-binding lectin, in human monocytes and macrophages. Am. J. Pathol. 147(4), 1016–1028 (1995)Google Scholar
  95. 95.
    Krugluger, W., Frigeri, L.G., Lucas, T., Schmer, M., Forster, O., Liu, F.T., Boltz-Nitulescu, G.: Galectin-3 inhibits granulocyte-macrophage colony-stimulating factor (GM-CSF)-driven rat bone marrow cell proliferation and GM-CSF-induced gene transcription. Immunobiology. 197(1), 97–109 (1997)Google Scholar
  96. 96.
    Cortegano, I., del Pozo, V., Cardaba, B., de Andres, B., Gallardo, S., del Amo, A., Arrieta, I., Jurado, A., Palomino, P., Liu, F.T., Lahoz, C.: Galectin-3 down-regulates IL-5 gene expression on different cell types. J. Immunol. 161(1), 385–389 (1998)Google Scholar
  97. 97.
    Cummings, R.D., Liu, F.T., Vasta, G.R.: Galectins. In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Essentials of Glycobiology, pp. 469–480. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)Google Scholar
  98. 98.
    Elola, M.T., Ferragut, F., Mendez-Huergo, S.P., Croci, D.O., Bracalente, C., Rabinovich, G.A.: Galectins: multitask signaling molecules linking fibroblast, endothelial and immune cell programs in the tumor microenvironment. Cell. Immunol. 333, 34–45 (2018)Google Scholar
  99. 99.
    Compagno, D., Jaworski, F.M., Gentilini, L., Contrufo, G., Gonzalez Perez, I., Elola, M.T., Pregi, N., Rabinovich, G.A., Laderach, D.J.: Galectins: major signaling modulators inside and outside the cell. Curr. Mol. Med. 14(5), 630–651 (2014)Google Scholar
  100. 100.
    Stowell, S.R., Arthur, C.M., Dias-Baruffi, M., Rodrigues, L.C., Gourdine, J.P., Heimburg-Molinaro, J., Ju, T., Molinaro, R.J., Rivera-Marrero, C., Xia, B., Smith, D.F., Cummings, R.D.: Innate immune lectins kill bacteria expressing blood group antigen. Nat. Med. 16(3), 295–301 (2010)Google Scholar
  101. 101.
    Stowell, S.R., Arthur, C.M., McBride, R., Berger, O., Razi, N., Heimburg-Molinaro, J., Rodrigues, L.C., Gourdine, J.P., Noll, A.J., von Gunten, S., Smith, D.F., Knirel, Y.A., Paulson, J.C., Cummings, R.D.: Microbial glycan microarrays define key features of host-microbial interactions. Nat. Chem. Biol. 10(6), 470–476 (2014)Google Scholar
  102. 102.
    Arthur, C.M., Cummings, R.D., Stowell, S.R.: Evaluation of the bactericidal activity of galectins. Methods Mol. Biol. 1207, 421–430 (2017)Google Scholar
  103. 103.
    Thurston, T.L., Wandel, M.P., von Muhlinen, N., Foeglein, A., Randow, F.: Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature. 482(7385), 414–418 (2012)Google Scholar
  104. 104.
    Kim, B.W., Hong, S.B., Kim, J.H., Kwon, D.H., Song, H.K.: Structural basis for recognition of autophagic receptor NDP52 by the sugar receptor galectin-8. Nat. Commun. 4(1613), (2013)Google Scholar
  105. 105.
    Crovello, C.S., Furie, B.C., Furie, B.: Rapid phosphorylation and selective dephosphorylation of P-selectin accompanies platelet activation. J. Biol. Chem. 268(20), 14590–14593 (1993)Google Scholar
  106. 106.
    Fujimoto, T., McEver, R.P.: The cytoplasmic domain of P-selectin is phosphorylated on serine and threonine residues. Blood. 82(6), 1758–1766 (1993)Google Scholar
  107. 107.
    Kaplanski, G., Farnarier, C., Benoliel, A.M., Foa, C., Kaplanski, S., Bongrand, P.: A novel role for E- and P-selectins: shape control of endothelial cell monolayers. J. Cell Sci. 107(Pt 9), 2449–2457 (1994)Google Scholar
  108. 108.
    Lo, S.K., Lee, S., Ramos, R.A., Lobb, R., Rosa, M., Chi-Rosso, G., Wright, S.D.: Endothelial-leukocyte adhesion molecule 1 stimulates the adhesive activity of leukocyte integrin CR3 (CD11b/CD18, mac-1, alpha m beta 2) on human neutrophils. J. Exp. Med. 173(6), 1493–1500 (1991)Google Scholar
  109. 109.
    Picker, L.J., Warnock, R.A., Burns, A.R., Doerschuk, C.M., Berg, E.L., Butcher, E.C.: The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell. 66(5), 921–933 (1991)Google Scholar
  110. 110.
    Damian, R.T.: Molecular mimicry in biological adaptation. Science. 147(3660), 824 (1965)Google Scholar
  111. 111.
    Damian, R.T.: Molecular mimicry: parasite evasion and host defense. Curr. Top. Microbiol. Immunol. 145, 101–115 (1989)Google Scholar
  112. 112.
    Nyame, A.K., Debose-Boyd, R., Long, T.D., Tsang, V.C., Cummings, R.D.: Expression of Lex antigen in Schistosoma japonicum and S.haematobium and immune responses to Lex in infected animals: lack of Lex expression in other trematodes and nematodes. Glycobiology. 8(6), 615–624 (1998)Google Scholar
  113. 113.
    Nyame, A.K., Leppanen, A.M., Bogitsh, B.J., Cummings, R.D.: Antibody responses to the fucosylated LacdiNAc glycan antigen in Schistosoma mansoni-infected mice and expression of the glycan among schistosomes. Exp. Parasitol. 96(4), 202–212 (2000)Google Scholar
  114. 114.
    Nyame, A.K., Leppanen, A.M., DeBose-Boyd, R., Cummings, R.D.: Mice infected with Schistosoma mansoni generate antibodies to LacdiNAc (GalNAc beta 1-->4GlcNAc) determinants. Glycobiology. 9(10), 1029–1035 (1999)Google Scholar
  115. 115.
    Nyame, A.K., Pilcher, J.B., Tsang, V.C., Cummings, R.D.: Schistosoma mansoni infection in humans and primates induces cytolytic antibodies to surface Le(x) determinants on myeloid cells. Exp. Parasitol. 82(2), 191–200 (1996)Google Scholar
  116. 116.
    Nyame, A.K., Pilcher, J.B., Tsang, V.C., Cummings, R.D.: Rodents infected with Schistosoma mansoni produce cytolytic IgG and IgM antibodies to the Lewis x antigen. Glycobiology. 7(2), 207–215 (1997)Google Scholar
  117. 117.
    Nyame, A.K., Yoshino, T.P., Cummings, R.D.: Differential expression of LacdiNAc, fucosylated LacdiNAc, and Lewis x glycan antigens in intramolluscan stages of Schistosoma mansoni. J. Parasitol. 88(5), 890–897 (2002)Google Scholar
  118. 118.
    Nyame, K., Smith, D.F., Damian, R.T., Cummings, R.D.: Complex-type asparagine-linked oligosaccharides in glycoproteins synthesized by Schistosoma mansoni adult males contain terminal beta-linked N-acetylgalactosamine. J. Biol. Chem. 264(6), 3235–3243 (1989)Google Scholar
  119. 119.
    Srivatsan, J., Smith, D.F., Cummings, R.D.: The human blood fluke Schistosoma mansoni synthesizes glycoproteins containing the Lewis X antigen. J. Biol. Chem. 267(28), 20196–20203 (1992)Google Scholar
  120. 120.
    Srivatsan, J., Smith, D.F., Cummings, R.D.: Schistosoma mansoni synthesizes novel biantennary Asn-linked oligosaccharides containing terminal beta-linked N-acetylgalactosamine. Glycobiology. 2(5), 445–452 (1992)Google Scholar
  121. 121.
    Richter, D., Incani, R.N., Harn, D.A.: Lacto-N-fucopentaose III (Lewis x), a target of the antibody response in mice vaccinated with irradiated cercariae of Schistosoma mansoni. Infect. Immun. 64(5), 1826–1831 (1996)Google Scholar
  122. 122.
    van Die, I., Gomord, V., Kooyman, F.N., van den Berg, T.K., Cummings, R.D., Vervelde, L.: Core alpha1-->3-fucose is a common modification of N-glycans in parasitic helminths and constitutes an important epitope for IgE from Haemonchus contortus infected sheep. FEBS Lett. 463(1–2), 189–193 (1999)Google Scholar
  123. 123.
    Jang-Lee, J., Curwen, R.S., Ashton, P.D., Tissot, B., Mathieson, W., Panico, M., Dell, A., Wilson, R.A., Haslam, S.M.: Glycomics analysis of Schistosoma mansoni egg and cercarial secretions. Mol. Cell. Proteomics. 6(9), 1485–1499 (2007)Google Scholar
  124. 124.
    Nyame, K., Cummings, R.D., Damian, R.T.: Characterization of the N- and O-linked oligosaccharides in glycoproteins synthesized by Schistosoma mansoni schistosomula. J. Parasitol. 74(4), 562–572 (1988)Google Scholar
  125. 125.
    Holt, G.D., Hart, G.W.: The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J. Biol. Chem. 261(17), 8049–8057 (1986)Google Scholar
  126. 126.
    Torres, C.R., Hart, G.W.: Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem. 259(5), 3308–3317 (1984)Google Scholar
  127. 127.
    van Die, I., Cummings, R.D.: Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response? Glycobiology. 20(1), 2–12 (2010)Google Scholar
  128. 128.
    Kawar, Z.S., Van Die, I., Cummings, R.D.: Molecular cloning and enzymatic characterization of a UDP-GalNAc:GlcNAc(beta)-R beta1,4-N-acetylgalactosaminyltransferase from Caenorhabditis elegans. J. Biol. Chem. 277(38), 34924–34932 (2002)Google Scholar
  129. 129.
    Stanley, P., Sundaram, S., Sallustio, S.: A subclass of cell surface carbohydrates revealed by a CHO mutant with two glycosylation mutations. Glycobiology. 1(3), 307–314 (1991)Google Scholar
  130. 130.
    Oelmann, S., Stanley, P., Gerardy-Schahn, R.: Point mutations identified in Lec8 Chinese hamster ovary glycosylation mutants that inactivate both the UDP-galactose and CMP-sialic acid transporters. J. Biol. Chem. 276(28), 26291–26300 (2001)Google Scholar
  131. 131.
    Kawar, Z.S., Haslam, S.M., Morris, H.R., Dell, A., Cummings, R.D.: Novel poly-GalNAcbeta1-4GlcNAc(LacdiNAc) and fucosylated poly-LacdiNAc N-glycans from mammalian cells expressing beta1,4-N-acetylgalactosaminyltransferase and alpha1,3-fucosyltransferase. J. Biol. Chem. 280(13), 12810–12819 (2005)Google Scholar
  132. 132.
    Song, X., Lasanajak, Y., Xia, B., Heimburg-Molinaro, J., Rhea, J.M., Ju, H., Zhao, C., Molinaro, R.J., Cummings, R.D., Smith, D.F.: Shotgun glycomics: a microarray strategy for functional glycomics. Nat. Methods. 8(1), 85–90 (2011)Google Scholar
  133. 133.
    Byrd-Leotis, L., Jia, N., Dutta, S., Trost, J.F., Gao, C., Cummings, S.F., Braulke, T., Muller-Loennies, S., Heimburg-Molinaro, J., Steinhauer, D.A., Cummings, R.D.: Influenza binds phosphorylated glycans from human lung. Sci. Adv. 5(2), eaav2554 (2019)Google Scholar
  134. 134.
    Mickum, M.L., Prasanphanich, N.S., Song, X., Dorabawila, N., Mandalasi, M., Lasanajak, Y., Luyai, A., Secor, W.E., Wilkins, P.P., Van Die, I., Smith, D.F., Nyame, A.K., Cummings, R.D., Rivera-Marrero, C.A.: Identification of antigenic Glycans from Schistosoma mansoni by using a shotgun egg glycan microarray. Infect. Immun. 84(5), 1371–1386 (2016)Google Scholar
  135. 135.
    Prasanphanich, N.S., Luyai, A.E., Song, X., Heimburg-Molinaro, J., Mandalasi, M., Mickum, M., Smith, D.F., Nyame, A.K., Cummings, R.D.: Immunization with recombinantly expressed glycan antigens from Schistosoma mansoni induces glycan-specific antibodies against the parasite. Glycobiology. 24(7), 619–637 (2014)Google Scholar
  136. 136.
    de Boer, A.R., Hokke, C.H., Deelder, A.M., Wuhrer, M.: Serum antibody screening by surface plasmon resonance using a natural glycan microarray. Glycoconj. J. 25(1), 75–84 (2008)Google Scholar
  137. 137.
    van Diepen, A., Smit, C.H., van Egmond, L., Kabatereine, N.B., Pinot de Moira, A., Dunne, D.W., Hokke, C.H.: Differential anti-glycan antibody responses in Schistosoma mansoni-infected children and adults studied by shotgun glycan microarray. PLoS Negl. Trop. Dis. 6(11), e1922 (2012)Google Scholar
  138. 138.
    de Boer, A.R., Hokke, C.H., Deelder, A.M., Wuhrer, M.: General microarray technique for immobilization and screening of natural glycans. Anal. Chem. 79(21), 8107–8113 (2007)Google Scholar
  139. 139.
    Jankowska, E., Parsons, L.M., Song, X., Smith, D.F., Cummings, R.D., Cipollo, J.F.: A comprehensive Caenorhabditis elegans N-glycan shotgun array. Glycobiology. 28(4), 223–232 (2018)Google Scholar
  140. 140.
    Klaver, E.J., Kuijk, L.M., Lindhorst, T.K., Cummings, R.D., van Die, I.: Schistosoma mansoni soluble egg antigens induce expression of the negative regulators SOCS1 and SHP1 in human dendritic cells via interaction with the mannose receptor. PLoS One. 10(4), e0124089 (2015)Google Scholar
  141. 141.
    Klaver, E.J., van der Pouw Kraan, T.C., Laan, L.C., Kringel, H., Cummings, R.D., Bouma, G., Kraal, G., van Die, I.: Trichuris suis soluble products induce Rab7b expression and limit TLR4 responses in human dendritic cells. Genes Immun. 16(6), 378–387 (2015)Google Scholar
  142. 142.
    van Die, I., van Vliet, S.J., Nyame, A.K., Cummings, R.D., Bank, C.M., Appelmelk, B., Geijtenbeek, T.B., van Kooyk, Y.: The dendritic cell-specific C-type lectin DC-SIGN is a receptor for Schistosoma mansoni egg antigens and recognizes the glycan antigen Lewis x. Glycobiology. 13(6), 471–478 (2003)Google Scholar
  143. 143.
    van Liempt, E., Bank, C.M., Mehta, P., Garcia-Vallejo, J.J., Kawar, Z.S., Geyer, R., Alvarez, R.A., Cummings, R.D., Kooyk, Y., van Die, I.: Specificity of DC-SIGN for mannose- and fucose-containing glycans. FEBS Lett. 580(26), 6123–6131 (2006)Google Scholar
  144. 144.
    van Die, I., Cummings, R.D.: The mannose receptor in regulation of helminth-mediated host immunity. Front. Immunol. 8(1677), (2017)Google Scholar
  145. 145.
    Nyame, K., Cummings, R.D., Damian, R.T.: Characterization of the high mannose asparagine-linked oligosaccharides synthesized by Schistosoma mansoni adult male worms. Mol. Biochem. Parasitol. 28(3), 265–274 (1988)Google Scholar
  146. 146.
    O'Neill, S.M., Brady, M.T., Callanan, J.J., Mulcahy, G., Joyce, P., Mills, K.H., Dalton, J.P.: Fasciola hepatica infection downregulates Th1 responses in mice. Parasite Immunol. 22(3), 147–155 (2000)Google Scholar
  147. 147.
    Dalton, J.P., Robinson, M.W., Mulcahy, G., O'Neill, S.M., Donnelly, S.: Immunomodulatory molecules of Fasciola hepatica: candidates for both vaccine and immunotherapeutic development. Vet. Parasitol. 195(3–4), 272–285 (2013)Google Scholar
  148. 148.
    Harn, D.A., McDonald, J., Atochina, O., Da'dara, A.A.: Modulation of host immune responses by helminth glycans. Immunol. Rev. 230(1), 247–257 (2009)Google Scholar
  149. 149.
    Spiro, R.G.: Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 12(4), 43R–56R (2002)Google Scholar
  150. 150.
    Steentoft, C., Vakhrushev, S.Y., Joshi, H.J., Kong, Y., Vester-Christensen, M.B., Schjoldager, K.T., Lavrsen, K., Dabelsteen, S., Pedersen, N.B., Marcos-Silva, L., Gupta, R., Bennett, E.P., Mandel, U., Brunak, S., Wandall, H.H., Levery, S.B., Clausen, H.: Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 32(10), 1478–1488 (2013)Google Scholar
  151. 151.
    Brockhausen, I., Stanley, P.: O-GalNAc Glycans. In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Essentials of Glycobiology, pp. 113–123. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017)Google Scholar
  152. 152.
    Halim, A., Brinkmalm, G., Ruetschi, U., Westman-Brinkmalm, A., Portelius, E., Zetterberg, H., Blennow, K., Larson, G., Nilsson, J.: Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloidbeta-peptides in human cerebrospinal fluid. Proc. Natl. Acad. Sci. U. S. A. 108(29), 11848–11853 (2011)Google Scholar
  153. 153.
    Vakhrushev, S.Y., Steentoft, C., Vester-Christensen, M.B., Bennett, E.P., Clausen, H., Levery, S.B.: Enhanced mass spectrometric mapping of the human GalNAc-type O-glycoproteome with SimpleCells. Mol. Cell. Proteomics. 12(4), 932–944 (2013)Google Scholar
  154. 154.
    Gibadullin, R., Farnsworth, D.W., Barchi Jr., J.J., Gildersleeve, J.C.: GalNAc-tyrosine is a ligand of plant lectins, antibodies, and human and murine macrophage galactose-type lectins. ACS Chem. Biol. 12(8), 2172–2182 (2017)Google Scholar
  155. 155.
    Bennett, E.P., Mandel, U., Clausen, H., Gerken, T.A., Fritz, T.A., Tabak, L.A.: Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology. 22(6), 736–756 (2012)Google Scholar
  156. 156.
    Ju, T., Otto, V.I., Cummings, R.D.: The Tn antigen-structural simplicity and biological complexity. Angew. Chem. Int. Ed. Eng. 50(8), 1770–1791 (2011)Google Scholar
  157. 157.
    Kudelka, M.R., Antonopoulos, A., Wang, Y., Duong, D.M., Song, X., Seyfried, N.T., Dell, A., Haslam, S.M., Cummings, R.D., Ju, T.: Cellular O-Glycomereporter/amplification to explore O-glycans of living cells. Nat. Methods. 13(1), 81–86 (2016)Google Scholar
  158. 158.
    Kudelka, M.R., Nairn, A.V., Sardar, M.Y., Sun, X., Chaikof, E.L., Ju, T., Moremen, K.W., Cummings, R.D.: Isotopic labeling with cellular O-glycomereporter/amplification(ICORA) for comparative O-glycomics of cultured cells. Glycobiology. 28(4), 214–222 (2018)Google Scholar
  159. 159.
    Ju, T., Cummings, R.D.: A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc. Natl. Acad. Sci. U. S. A. 99(26), 16613–16618 (2002)Google Scholar
  160. 160.
    Ju, T., Aryal, R.P., Stowell, C.J., Cummings, R.D.: Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc. J. Cell Biol. 182(3), 531–542 (2008)Google Scholar
  161. 161.
    Sun, Q., Ju, T., Cummings, R.D.: The transmembrane domain of the molecular chaperone Cosmc directs its localization to the endoplasmic reticulum. J. Biol. Chem. 286(13), 11529–11542 (2011)Google Scholar
  162. 162.
    Narimatsu, Y., Kubota, T., Furukawa, S., Shimojima, M., Iwasaki, H., Tozawa, Y., Tachibana, K., Narimatsu, H.: Co-translational function of Cosmc, core 1 synthase specific molecular chaperone, revealed by a cell-free translation system. FEBS Lett. 585(9), 1276–1280 (2011)Google Scholar
  163. 163.
    Aryal, R.P., Ju, T., Cummings, R.D.: The endoplasmic reticulum chaperone Cosmc directly promotes in vitro folding of T-synthase. J. Biol. Chem. 285(4), 2456–2462 (2010)Google Scholar
  164. 164.
    Aryal, R.P., Ju, T., Cummings, R.D.: Tight complex formation between Cosmc chaperone and its specific client non-native T-synthase leads to enzyme activity and client-driven dissociation. J. Biol. Chem. 287(19), 15317–15329 (2012)Google Scholar
  165. 165.
    Aryal, R.P., Ju, T., Cummings, R.D.: Identification of a novel protein binding motif within the T-synthase for the molecular chaperone Cosmc. J. Biol. Chem. 289(17), 11630–11641 (2014)Google Scholar
  166. 166.
    Dausset, J., Moullec, J., Bernard, J.: Acquired hemolytic anemia with polyagglutinability of red blood cells due to a new factor present in normal human serum (anti-Tn). Blood. 14, 1079–1093 (1959)Google Scholar
  167. 167.
    Vainchenker, W., Vinci, G., Testa, U., Henri, A., Tabilio, A., Fache, M.P., Rochant, H., Cartron, J.P.: Presence of the Tn antigen on hematopoietic progenitors from patients with the Tn syndrome. J. Clin. Invest. 75(2), 541–546 (1985)Google Scholar
  168. 168.
    Thurnher, M., Clausen, H., Fierz, W., Lanzavecchia, A., Berger, E.G.: T cell clones with normal or defective O-galactosylation from a patient with permanent mixed-field polyagglutinability. Eur. J. Immunol. 22(7), 1835–1842 (1992)Google Scholar
  169. 169.
    Ju, T., Cummings, R.D.: Protein glycosylation: chaperone mutation in Tn syndrome. Nature. 437(7063), 1252 (2005)Google Scholar
  170. 170.
    Crew, V.K., Singleton, B.K., Green, C., Parsons, S.F., Daniels, G., Anstee, D.J.: New mutations in C1GALT1C1 in individuals with Tn positive phenotype. Br. J. Haematol. 142(4), 657–667 (2008)Google Scholar
  171. 171.
    Yu, X., Du, Z., Sun, X., Shi, C., Zhang, H., Hu, T.: Aberrant Cosmc genes result in Tn antigen expression in human colorectal carcinoma cell line HT-29. Int. J. Clin. Exp. Pathol. 8(3), 2590–2602 (2015)Google Scholar
  172. 172.
    Sun, X., Ju, T., Cummings, R.D.: Differential expression of Cosmc, T-synthase and mucins in Tn-positive colorectal cancers. BMC Cancer. 18(1), 827 (2018)Google Scholar
  173. 173.
    Wang, Y., Ju, T., Ding, X., Xia, B., Wang, W., Xia, L., He, M., Cummings, R.D.: Cosmc is an essential chaperone for correct protein O-glycosylation. Proc. Natl. Acad. Sci. U. S. A. 107(20), 9228–9233 (2010)Google Scholar
  174. 174.
    Wang, Y., Jobe, S.M., Ding, X., Choo, H., Archer, D.R., Mi, R., Ju, T., Cummings, R.D.: Platelet biogenesis and functions require correct protein O-glycosylation. Proc. Natl. Acad. Sci. U. S. A. 109(40), 16143–16148 (2012)Google Scholar
  175. 175.
    Xia, L., McEver, R.P.: Targeted disruption of the gene encoding core 1 beta1-3-galactosyltransferase(T-synthase) causes embryonic lethality and defective angiogenesis in mice. Methods Enzymol. 416, 314–331 (2006)Google Scholar
  176. 176.
    Yago, T., Fu, J., McDaniel, J.M., Miner, J.J., McEver, R.P., Xia, L.: Core 1-derived O-glycans are essential E-selectin ligands on neutrophils. Proc. Natl. Acad. Sci. U. S. A. 107(20), 9204–9209 (2010)Google Scholar
  177. 177.
    Fu, J., Gerhardt, H., McDaniel, J.M., Xia, B., Liu, X., Ivanciu, L., Ny, A., Hermans, K., Silasi-Mansat, R., McGee, S., Nye, E., Ju, T., Ramirez, M.I., Carmeliet, P., Cummings, R.D., Lupu, F., Xia, L.: Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J. Clin. Invest. 118(11), 3725–3737 (2008)Google Scholar
  178. 178.
    Jacobs, J.P., Lin, L., Goudarzi, M., Ruegger, P., McGovern, D.P., Fornace Jr., A.J., Borneman, J., Xia, L., Braun, J.: Microbial, metabolomic, and immunologic dynamics in a relapsing genetic mouse model of colitis induced by T-synthase deficiency. Gut Microbes. 8(1), 1–16 (2017)Google Scholar
  179. 179.
    Song, K., Fu, J., Song, J., Herzog, B.H., Bergstrom, K., Kondo, Y., McDaniel, J.M., McGee, S., Silasi-Mansat, R., Lupu, F., Chen, H., Bagavant, H., Xia, L.: Loss of mucin-type O-glycans impairs the integrity of the glomerular filtration barrier in the mouse kidney. J. Biol. Chem. 292(40), 16491–16497 (2017)Google Scholar
  180. 180.
    Nakazawa, S., Imamura, R., Kawamura, M., Kato, T., Abe, T., Iwatani, H., Yamanaka, K., Uemura, M., Kishikawa, H., Nishimura, K., Tajiri, M., Wada, Y., Nonomura, N.: Evaluation of IgA1 O-glycosylation in Henoch-Schonlein Purpura nephritis using mass spectrometry. Transplant. Proc. 51(5), 1481–1487 (2019)Google Scholar
  181. 181.
    Qin, W., Zhou, Q., Yang, L.C., Li, Z., Su, B.H., Luo, H., Fan, J.M.: Peripheral B lymphocyte beta1,3-galactosyltransferase and chaperone expression in immunoglobulin a nephropathy. J. Intern. Med. 258(5), 467–477 (2005)Google Scholar
  182. 182.
    Kiryluk, K., Li, Y., Moldoveanu, Z., Suzuki, H., Reily, C., Hou, P., Xie, J., Mladkova, N., Prakash, S., Fischman, C., Shapiro, S., LeDesma, R.A., Bradbury, D., Ionita-Laza, I., Eitner, F., Rauen, T., Maillard, N., Berthoux, F., Floege, J., Chen, N., Zhang, H., Scolari, F., Wyatt, R.J., Julian, B.A., Gharavi, A.G., Novak, J.: GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. 13(2), e1006609 (2017)Google Scholar
  183. 183.
    Chang, D., Gao, F., Slavney, A., Ma, L., Waldman, Y.Y., Sams, A.J., Billing-Ross, P., Madar, A., Spritz, R., Keinan, A.: Accounting for eXentricities: analysis of the X chromosome in GWAS reveals X-linked genes implicated in autoimmune diseases. PLoS One. 9(12), e113684 (2014)Google Scholar
  184. 184.
    Steentoft, C., Bennett, E.P., Clausen, H.: Glycoengineering of human cell lines using zinc finger nuclease gene targeting: SimpleCells with homogeneous GalNAc O-glycosylation allow isolation of the O-glycoproteome by one-step lectin affinity chromatography. Methods Mol. Biol. 1022, 387–402 (2013)Google Scholar
  185. 185.
    Hakomori, S.: Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv. Cancer Res. 52, 257–331 (1989)Google Scholar
  186. 186.
    Ju, T., Aryal, R.P., Kudelka, M.R., Wang, Y., Cummings, R.D.: The Cosmc connection to the Tn antigen in cancer. Cancer Biomark. 14(1), 63–81 (2014)Google Scholar
  187. 187.
    Kudelka, M.R., Ju, T., Heimburg-Molinaro, J., Cummings, R.D.: Simple sugars to complex disease--mucin-typeO-glycans in cancer. Adv. Cancer Res. 126, 53–135 (2015)Google Scholar
  188. 188.
    Mi, R., Song, L., Wang, Y., Ding, X., Zeng, J., Lehoux, S., Aryal, R.P., Wang, J., Crew, V.K., van Die, I., Chapman, A.B., Cummings, R.D., Ju, T.: Epigenetic silencing of the chaperone Cosmc in human leukocytes expressing tn antigen. J. Biol. Chem. 287(49), 41523–41533 (2012)Google Scholar
  189. 189.
    Hofmann, B.T., Schluter, L., Lange, P., Mercanoglu, B., Ewald, F., Folster, A., Picksak, A.S., Harder, S., El Gammal, A.T., Grupp, K., Gungor, C., Drenckhan, A., Schluter, H., Wagener, C., Izbicki, J.R., Jucker, M., Bockhorn, M., Wolters-Eisfeld, G.: COSMC knockdown mediated aberrant O-glycosylation promotes oncogenic properties in pancreatic cancer. Mol. Cancer. 14(109), (2015)Google Scholar
  190. 190.
    Radhakrishnan, P., Dabelsteen, S., Madsen, F.B., Francavilla, C., Kopp, K.L., Steentoft, C., Vakhrushev, S.Y., Olsen, J.V., Hansen, L., Bennett, E.P., Woetmann, A., Yin, G., Chen, L., Song, H., Bak, M., Hlady, R.A., Peters, S.L., Opavsky, R., Thode, C., Qvortrup, K., Schjoldager, K.T., Clausen, H., Hollingsworth, M.A., Wandall, H.H.: Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proc. Natl. Acad. Sci. U. S. A. 111(39), E4066–E4075 (2014)Google Scholar
  191. 191.
    Chugh, S., Barkeer, S., Rachagani, S., Nimmakayala, R.K., Perumal, N., Pothuraju, R., Atri, P., Mahapatra, S., Thapa, I., Talmon, G.A., Smith, L.M., Yu, X., Neelamegham, S., Fu, J., Xia, L., Ponnusamy, M.P., Batra, S.K.: Disruption of C1galt1 gene promotes development and metastasis of pancreatic adenocarcinomas in mice. Gastroenterology. 155(5), 1608–1624 (2018)Google Scholar
  192. 192.
    Gao, N., Bergstrom, K., Fu, J., Xie, B., Chen, W., Xia, L.: Loss of intestinal O-glycans promotes spontaneous duodenal tumors. Am. J. Physiol. Gastrointest. Liver Physiol. 311(1), G74–G83 (2016)Google Scholar
  193. 193.
    Kudelka, M.R., Hinrichs, B.H., Darby, T., Moreno, C.S., Nishio, H., Cutler, C.E., Wang, J., Wu, H., Zeng, J., Wang, Y., Ju, T., Stowell, S.R., Nusrat, A., Jones, R.M., Neish, A.S., Cummings, R.D.: Cosmc is an X-linked inflammatory bowel disease risk gene that spatially regulates gut microbiota and contributes to sex-specific risk. Proc. Natl. Acad. Sci. U. S. A. 113(51), 14787–14792 (2016)Google Scholar
  194. 194.
    Cummings, R.D., Kornfeld, S., Schneider, W.J., Hobgood, K.K., Tolleshaug, H., Brown, M.S., Goldstein, J.L.: Biosynthesis of N- and O-linked oligosaccharides of the low density lipoprotein receptor. J. Biol. Chem. 258(24), 15261–15273 (1983)Google Scholar
  195. 195.
    Kingsley, D.M., Kozarsky, K.F., Hobbie, L., Krieger, M.: Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-gal/UDP-GalNAc 4-epimerase deficient mutant. Cell. 44(5), 749–759 (1986)Google Scholar
  196. 196.
    Wang, S., Mao, Y., Narimatsu, Y., Ye, Z., Tian, W., Goth, C.K., Lira-Navarrete, E., Pedersen, N.B., Benito-Vicente, A., Martin, C., Uribe, K.B., Hurtado-Guerrero, R., Christoffersen, C., Seidah, N.G., Nielsen, R., Christensen, E.I., Hansen, L., Bennett, E.P., Vakhrushev, S.Y., Schjoldager, K.T., Clausen, H.: Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions. J. Biol. Chem. 293(19), 7408–7422 (2018)Google Scholar
  197. 197.
    Cummings, R.D.: The repertoire of glycan determinants in the human glycome. Mol. BioSyst. 5(10), 1087–1104 (2009)Google Scholar
  198. 198.
    Schneider, C., Smith, D.F., Cummings, R.D., Boligan, K.F., Hamilton, R.G., Bochner, B.S., Miescher, S., Simon, H.U., Pashov, A., Vassilev, T., von Gunten, S.: The human IgG anti-carbohydrate repertoire exhibits a universal architecture and contains specificity for microbial attachment sites. Sci. Transl. Med. 7(269), 269ra261 (2015)Google Scholar
  199. 199.
    von Gunten, S., Smith, D.F., Cummings, R.D., Riedel, S., Miescher, S., Schaub, A., Hamilton, R.G., Bochner, B.S.: Intravenous immunoglobulin contains a broad repertoire of anticarbohydrate antibodies that is not restricted to the IgG2 subclass. J. Allergy Clin. Immunol. 123(6), 1268–1276 e1215 (2009)Google Scholar
  200. 200.
    Lu, L.L., Smith, M.T., Yu, K.K.Q., Luedemann, C., Suscovich, T.J., Grace, P.S., Cain, A., Yu, W.H., McKitrick, T.R., Lauffenburger, D., Cummings, R.D., Mayanja-Kizza, H., Hawn, T.R., Boom, W.H., Stein, C.M., Fortune, S.M., Seshadri, C., Alter, G.: IFN-gamma-independent immune markers of mycobacterium tuberculosis exposure. Nat. Med. 25(6), 977–987 (2019)Google Scholar
  201. 201.
    Wang, D., Liu, S., Trummer, B.J., Deng, C., Wang, A.: Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20(3), 275–281 (2002)Google Scholar
  202. 202.
    Feizi, T., Fazio, F., Chai, W., Wong, C.H.: Carbohydrate microarrays - a new set of technologies at the frontiers of glycomics. Curr. Opin. Struct. Biol. 13(5), 637–645 (2003)Google Scholar
  203. 203.
    Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M.E., Alvarez, R., Bryan, M.C., Fazio, F., Calarese, D., Stevens, J., Razi, N., Stevens, D.J., Skehel, J.J., van Die, I., Burton, D.R., Wilson, I.A., Cummings, R., Bovin, N., Wong, C.H., Paulson, J.C.: Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. U. S. A. 101(49), 17033–17038 (2004)Google Scholar
  204. 204.
    Boonyarattanakalin, S., Liu, X., Michieletti, M., Lepenies, B., Seeberger, P.H.: Chemical synthesis of all phosphatidylinositol mannoside (PIM) glycans from mycobacterium tuberculosis. J. Am. Chem. Soc. 130(49), 16791–16799 (2008)Google Scholar
  205. 205.
    Hirabayashi, J.: Oligosaccharide microarrays for glycomics. Trends Biotechnol. 21(4), 141–143; discussion 143 (2003)Google Scholar
  206. 206.
    Alvarez, R.A., Blixt, O.: Identification of ligand specificities for glycan-binding proteins using glycan arrays. Methods Enzymol. 415, 292–310 (2006)Google Scholar
  207. 207.
    Song, X., Heimburg-Molinaro, J., Smith, D.F., Cummings, R.D.: Derivatization of free natural glycans for incorporation onto glycan arrays: derivatizing glycans on the microscale for microarray and other applications (ms# CP-10-0194). Curr Protoc Chem Biol. 3(2), 53–63 (2011)Google Scholar
  208. 208.
    Smith, D.F., Cummings, R.D., Song, X.: History and future of shotgun glycomics. Biochem. Soc. Trans. 47(1), 1–11 (2019)Google Scholar
  209. 209.
    Xia, B., Kawar, Z.S., Ju, T., Alvarez, R.A., Sachdev, G.P., Cummings, R.D.: Versatile fluorescent derivatization of glycans for glycomic analysis. Nat. Methods. 2(11), 845–850 (2005)Google Scholar
  210. 210.
    Song, X., Xia, B., Stowell, S.R., Lasanajak, Y., Smith, D.F., Cummings, R.D.: Novel fluorescent glycan microarray strategy reveals ligands for galectins. Chem. Biol. 16(1), 36–47 (2009)Google Scholar
  211. 211.
    Yu, Y., Lasanajak, Y., Song, X., Hu, L., Ramani, S., Mickum, M.L., Ashline, D.J., Prasad, B.V., Estes, M.K., Reinhold, V.N., Cummings, R.D., Smith, D.F.: Human milk contains novel glycans that are potential decoy receptors for neonatal rotaviruses. Mol. Cell. Proteomics. 13(11), 2944–2960 (2014)Google Scholar
  212. 212.
    Yu, Y., Mishra, S., Song, X., Lasanajak, Y., Bradley, K.C., Tappert, M.M., Air, G.M., Steinhauer, D.A., Halder, S., Cotmore, S., Tattersall, P., Agbandje-McKenna, M., Cummings, R.D., Smith, D.F.: Functional glycomic analysis of human milk glycans reveals the presence of virus receptors and embryonic stem cell biomarkers. J. Biol. Chem. 287(53), 44784–44799 (2012)Google Scholar
  213. 213.
    Byrd-Leotis, L., Liu, R., Bradley, K.C., Lasanajak, Y., Cummings, S.F., Song, X., Heimburg-Molinaro, J., Galloway, S.E., Culhane, M.R., Smith, D.F., Steinhauer, D.A., Cummings, R.D.: Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses. Proc. Natl. Acad. Sci. U. S. A. 111(22), E2241–E2250 (2014)Google Scholar
  214. 214.
    Hu, L., Ramani, S., Czako, R., Sankaran, B., Yu, Y., Smith, D.F., Cummings, R.D., Estes, M.K., Venkataram Prasad, B.V.: Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus. Nat. Commun. 6(8346), (2015)Google Scholar
  215. 215.
    Byrd-Leotis, L., Cummings, R.D., Steinhauer, D.A.: The interplay between the host receptor and influenza virus hemagglutinin and neuraminidase. Int. J. Mol. Sci. 18(7), (2017)Google Scholar
  216. 216.
    Byrd-Leotis, L., Jia, N., Dutta, S., Trost, J., Gao, C., Cummings, S., Braulke, T., Müller-Loennies, S., Heimburg-Molinaro, J., Steinhauer, D., Cummings, R.: Influenza binds phosphorylated Glycans from human lung. Sci. Adv. 5(2), eaav2554 (2019)Google Scholar
  217. 217.
    Gulati, S., Lasanajak, Y., Smith, D.F., Cummings, R.D., Air, G.M.: Glycan array analysis of influenza H1N1 binding and release. Cancer Biomark. 14(1), 43–53 (2014)Google Scholar
  218. 218.
    Gulati, S., Smith, D.F., Cummings, R.D., Couch, R.B., Griesemer, S.B., St George, K., Webster, R.G., Air, G.M.: Human H3N2 influenza viruses isolated from 1968 to 2012 show varying preference for receptor substructures with no apparent consequences for disease or spread. PLoS One. 8(6), e66325 (2013)Google Scholar
  219. 219.
    Heimburg-Molinaro, J., Tappert, M., Song, X., Lasanajak, Y., Air, G., Smith, D.F., Cummings, R.D.: Probing virus-glycan interactions using glycan microarrays. Methods Mol. Biol. 808, 251–267 (2012)Google Scholar
  220. 220.
    Song, X., Yu, H., Chen, X., Lasanajak, Y., Tappert, M.M., Air, G.M., Tiwari, V.K., Cao, H., Chokhawala, H.A., Zheng, H., Cummings, R.D., Smith, D.F.: A sialylated glycan microarray reveals novel interactions of modified sialic acids with proteins and viruses. J. Biol. Chem. 286(36), 31610–31622 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA

Personalised recommendations