Compositional analysis of the glycosaminoglycan family in velvet antlers of Sika deer (Cervus nippon) at different growing stages

  • Naoko Takeda-Okuda
  • Shuji Mizumoto
  • Zui Zhang
  • Soo-Ki Kim
  • Chi-Ho Lee
  • Byong-Tae Jeon
  • Yoshinao Z. Hosaka
  • Kenji Kadomatsu
  • Shuhei Yamada
  • Jun-ichi TamuraEmail author
Original Article


Glycosaminoglycans (GAG) from the velvet antlers of Sika deer (Cervus nippon) at the different growing stages (Fukurozuno, Anshi, and Santajo) of bred and wild deer were isolated and their concentrations and sulfation patterns were analyzed. GAG were digested with chondroitinase ABC, ACI, heparinase-I and -III, and keratanase-II into the corresponding repeating disaccharides of chondroitin sulfate (CS), dermatan sulfate (DS), hyaluronan, heparan sulfate (HS), and keratan sulfate. Cartilaginous tissues contained CS-DS at high concentrations with an almost equal ratio of 4- and 6-sulfates, while 4-sulfate-type CS-DS predominantly occupied ossified tissues, but at low concentrations. High O- and N-sulfation degrees of HS correspond to high ossification. Dynamic quantitative changes in CS-DS and compositional changes in CS-DS and HS were closely associated with the mineralization of deer antlers.


Velvet antler Chondroitin sulfate Dermatan sulfate Heparan sulfate Keratan sulfate Hyaluronan 



We are grateful to Mr. Tsuyoshi Kawato for the kind gift of wild velvet antlers. We also thank Amano Enzyme Inc. (Nagoya, Japan) for kindly gifting PROTIN NY100. The authors thank Dr. Kenji Uchimura (UMR8576-CNRS, University of Lille), Ms. Kwon-Jung Yi (Konkuk University), Mr. Takamu Fujii, Ms. Yukino Ito (Meijo University), Mr. Yuga Inoue, Ms. Asumi Uemura, Mr. Daiki Sugita, Ms. Yuna Uemura, Ms. Yuka Omura, Ms. Akari Tani, and Ms. Marin Mitani (Tottori University) for their helpful assistance.

Author’s contribution

N.T.-O. performed the preparation of glycans and analyzed CS/DS and HA. S.M. and S.Y. performed HS analyses. Z.Z. and K.K. performed KS analyses. S.-K.K., C.-H.L., and B.-T.J. collected deer antlers. Y.Z.H. performed histological examinations. J.T. designed the study and wrote the manuscript.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Dinsmore, C.E., Goss, R.J., Lenz, M.E., Thonar, E.J.-M.A.: Correlation between phases of deer antler regeneration and levels of serum keratin sulfate. Calcif. Tissue Int. 39, 244–247 (1986)CrossRefGoogle Scholar
  2. 2.
    Zhao, Q.-C., Kiyohara, H., Nagai, T., Yamada, H.: Structure of the complement-activating proteoglycan from the pilose antler of Cervus nippon Temminck. Carbohydr. Res. 230, 361–372 (1992)CrossRefGoogle Scholar
  3. 3.
    Sunwoo, H.H., Nakano, T., Hudson, R.J., Sim, J.S.: Chemical composition of antlers from wapiti (Cervus elaphus). J. Agric. Food Chem. 43, 2846–2849 (1995)CrossRefGoogle Scholar
  4. 4.
    Sunwoo, H.H., Nakano, T., Hudson, R.J., Sim, J.S.: Isolation, characterization and localization of glycosaminoglycans in growing antlers of wapiti (Cervus elaphus). Comp. Biochem. Physiol. Part B. 120, 273–283 (1998)CrossRefGoogle Scholar
  5. 5.
    Ha, Y.W., Jeon, B.T., Moon, S.H., Toyoda, H., Toida, T., Linhardt, R.J., Kim, Y.S.: Characterization of heparin sulfate from the unossified antler of Cervus elaphus. Carbohydr. Res. 340, 411–416 (2005)CrossRefGoogle Scholar
  6. 6.
    Pothacharoen, P., Kodchakorn, K., Kongtawelert, P.: Characterization of chondroitin sulfate from deer tip antler and osteogenic properties. Glycoconj. J. 28, 473–480 (2011)CrossRefGoogle Scholar
  7. 7.
    Arima, K., Fujita, H., Toita, R., Imazu-Okada, A., Tsutsumishita-Nakai, N., Takeda, N., Nakao, Y., Wang, H., Kawano, M., Matsushita, K., Tanaka, H., Morimoto, S., Nakamura, A., Kitagaki, M., Hieda, Y., Hatto, R., Watanabe, A., Yumura, T., Okuhara, T., Hayashi, H., Shimizu, K., Nakayama, K., Masuda, S., Ishihara, Y., Yoshioka, S., Yoshioka, S., Shirade, S., Tamura, J.I.: Amounts and compositional analysis of glycosaminoglycans in the tissue of fish. Carbohydr. Res. 366, 25–32 (2013)CrossRefGoogle Scholar
  8. 8.
    Yoshida, K., Miyauchi, S., Kikuchi, H., Tawada, A., Tokuyasu, K.: Analysis of unsaturated disaccharides from glycosaminoglycuronan by high-performance liquid chromatography. Anal. Biochem. 177, 327–332 (1989)CrossRefGoogle Scholar
  9. 9.
    Hjerpe, A., Antonopoulos, C.A., Engfeldt: Determination of hyaluronic acid using high-performance liquid chromatography chondroitinase digests. J. Chromatogr. 245, 365–368 (1982)CrossRefGoogle Scholar
  10. 10.
    Mizumoto, S., Sugahara, K.: Glycosaminoglycan chain analysis and characterization (glycosylation/epimerization) “proteoglycans: methods and protocols”. Methods Mol. Biol. 836, 99–115 (2012)CrossRefGoogle Scholar
  11. 11.
    Uchimura, K.: Keratran sulfate: biosynthesis, structures, and biological functions. Methods Mol. Biol. 1229, 389–400 (2015)CrossRefGoogle Scholar
  12. 12.
    Zhang, Z., Ohtake-Niimi, S., Kadomatsu, K., Uchimura, K.: Reduced molecular size and altered disaccharide composition of cerebral chondroitin sulfate upon Alzheimer’s pathogenesis in mice. Nagoya J. Med. Sci. 78, 293–301 (2016)Google Scholar
  13. 13.
    Takeda, N., Horai, S., Tamura, J.: Facile analysis of contents and compositions of the chondroitin sulfate/dermatan sulfate hybrid chain in shark and ray tissues. Carbohydr. Res. 424, 54–58 (2016)CrossRefGoogle Scholar
  14. 14.
    Harab, R.C., Mourão, P.A.S.: Increase of chondroitin 4-sulfate concentration in the endochondral ossification cartilage of normal dogs. Biochim. Biophys. Acta. 992, 237–240 (1989)CrossRefGoogle Scholar
  15. 15.
    Robinson, H.C., Dorfman, A.: The sulfation of chondroitin sulfate in embryonic chick cartilage epiphyses. J. Biol. Chem. 244, 348–352 (1969)Google Scholar
  16. 16.
    Kitagawa, H., Tsutsumi, K., Tone, Y., Sugahara, K.: Developmental regulation of the sulfation profile of chondroitin sulfate chains in the chicken embryo brain. J. Biol. Chem. 272, 31377–31381 (1997)CrossRefGoogle Scholar
  17. 17.
    Habuchi, H., Kimata, K., Suzuki, S.: Changes in proteoglycan composition during development of rat skin. The occurrence in fetal skin of a chondroitin sulfate proteoglycan with high turnover rate. J. Biol. Chem. 261, 1031–1040 (1986)Google Scholar
  18. 18.
    Roughly, P.J., White, R.J.: Age-related changes in the structure of the proteoglycan subunits from human articular cartilage. J. Biol. Chem. 255, 217–224 (1980)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Naoko Takeda-Okuda
    • 1
  • Shuji Mizumoto
    • 2
  • Zui Zhang
    • 3
  • Soo-Ki Kim
    • 4
  • Chi-Ho Lee
    • 4
  • Byong-Tae Jeon
    • 5
  • Yoshinao Z. Hosaka
    • 6
  • Kenji Kadomatsu
    • 3
  • Shuhei Yamada
    • 2
  • Jun-ichi Tamura
    • 1
    Email author
  1. 1.Department of Life and Environmental Agricultural Sciences, Faculty of AgricultureTottori UniversityTottoriJapan
  2. 2.Department of Pathobiochemistry, Faculty of PharmacyMeijo UniversityNagoyaJapan
  3. 3.Department of BiochemistryNagoya University Graduate School of MedicineNagoyaJapan
  4. 4.Department of Animal Science and Technology, College of Animal Bioscience and BiotechnologyKonkuk UniversitySeoulKorea
  5. 5.Korea Nokyong Research CenterKonkuk UniversityChungjuKorea
  6. 6.Veterinary Anatomy, Joint Department of Veterinary Medicine, Faculty of AgricultureTottori UniversityTottoriJapan

Personalised recommendations