Advertisement

Compositional and structural analysis of glycosaminoglycans in cell-derived extracellular matrices

  • João C. Silva
  • Marta S. Carvalho
  • Xiaorui Han
  • Ke Xia
  • Paiyz E. Mikael
  • Joaquim M. S. Cabral
  • Frederico Castelo Ferreira
  • Robert J. LinhardtEmail author
Original Article

Abstract

The extracellular matrix (ECM) is a highly dynamic and complex meshwork of proteins and glycosaminoglycans (GAGs) with a crucial role in tissue homeostasis and organization not only by defining tissue architecture and mechanical properties, but also by providing chemical cues that regulate major biological processes. GAGs are associated with important physiological functions, acting as modulators of signaling pathways regulating several cellular processes such as cell growth and differentiation. Recently, in vitro fabricated cell-derived ECM have emerged as promising materials for regenerative medicine due to their ability of better recapitulate the native ECM-like composition and structure, without the limitations of availability and pathogen transfer risks of tissue-derived ECM scaffolds. However, little is known about the molecular and more specifically, GAG composition of these cell-derived ECM. In this study, three different cell-derived ECM were produced in vitro and characterized in terms of their GAG content, composition and sulfation patterns using a highly sensitive liquid chromatography-tandem mass spectrometry technique. Distinct GAG compositions and disaccharide sulfation patterns were verified for the different cell-derived ECM. Additionally, the effect of decellularization method on the GAG and disaccharide relative composition was also assessed. In summary, the method presented here offers a novel approach to determine the GAG composition of cell-derived ECM, which we believe is critical for a better understanding of ECM role in directing cellular responses and has the potential for generating important knowledge to use in the development of novel ECM-like biomaterials for tissue engineering applications.

Keywords

Glycosaminoglycans Compositional analysis, Cell-derived extracellular matrix Disaccharides Chondrocytes Mesenchymal stem cells 

Notes

Acknowledgments

This work was supported by funding received by iBB-Institute for Bioengineering and Biosciences through Programa Operacional Regional de Lisboa 2020 (Project N. 007317), through the EU COMPETE Program and from National Funds through FCT-Portuguese Foundation for Science and Technology under the Programme grant UID/BIO/04565/2013 and by the European Union Framework Programme for Research and Innovation HORIZON 2020, under the Teaming Grant agreement No 739572 – The Discoveries Centre for Regenerative and Precision Medicine. This study was also supported by Center for Biotechnology and Interdisciplinary Studies-Rensselaer Polytechnic Institute funds and by the National Institutes of Health (Grant # DK111958). João C. Silva and Marta S. Carvalho would also like to acknowledge FCT for financial support through the scholarships SFRH/BD/105771/2014 and SFRH/BD/52478/2014, respectively.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This work does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10719_2019_9858_MOESM1_ESM.pdf (461 kb)
ESM 1 (PDF 460 kb)

References

  1. 1.
    Lu, H., Hoshiba, T., Kawazoe, N., Koda, I., Song, M., Chen, G.: Cultured cell-derived extracellular matrix scaffolds for tissue engineering. Biomaterials. 32, 9658–9666 (2011).  https://doi.org/10.1016/j.biomaterials.2011.08.091 CrossRefGoogle Scholar
  2. 2.
    Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O.: The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 49, 10–24 (2016).  https://doi.org/10.1016/j.matbio.2015.06.003 CrossRefGoogle Scholar
  3. 3.
    Bonnans, C., Chou, J., Werb, Z.: Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).  https://doi.org/10.1038/nrm3904 CrossRefGoogle Scholar
  4. 4.
    Gilbert, T.W., Sellaro, T.L., Badylak, S.F.: Decellularization of tissues and organs. Biomaterials. 27, 3675–3683 (2006).  https://doi.org/10.1016/j.biomaterials.2006.02.014 Google Scholar
  5. 5.
    Badylak, S.F., Taylor, D., Uygun, K.: Whole organ tissue engineering: Decellularization and Recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 13, 27–53 (2010).  https://doi.org/10.1146/annurev-bioeng-071910-124743 CrossRefGoogle Scholar
  6. 6.
    Wong, M.L., Griffiths, L.G.: Immunogenicity in xenogeneic scaffold generation: Antigen removal vs. decellularization. Acta Biomater. 10, 1806–1816 (2014).  https://doi.org/10.1016/j.actbio.2014.01.028 CrossRefGoogle Scholar
  7. 7.
    Hoshiba, T., Lu, H., Kawazoe, N., Chen, G.: Decellularized matrices for tissue engineering. Expert. Opin. Biol. Ther. 10, 1717–1728 (2010).  https://doi.org/10.1517/14712598.2010.534079 CrossRefGoogle Scholar
  8. 8.
    Lu, H., Hoshiba, T., Kawazoe, N., Chen, G.: Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials. 32, 2489–2499 (2011).  https://doi.org/10.1016/j.biomaterials.2010.12.016 CrossRefGoogle Scholar
  9. 9.
    Kang, Y., Kim, S., Bishop, J., Khademhosseini, A., Yang, Y.: The osteogenic differentiation of human bone marrow MSCs on HUVEC-derived ECM and β-TCP scaffold. Biomaterials. 33, 6998–7007 (2012).  https://doi.org/10.1016/j.biomaterials.2012.06.061 CrossRefGoogle Scholar
  10. 10.
    Zeitouni, S., Krause, U., Clough, B.H., Halderman, H., Falster, A., Blalock, D.T., Chaput, C.D., Sampson, H.W., Gregory, C.A.: Human mesenchymal stem cell-derived matrices for enhanced osteoregeneration. Sci. Transl. Med. 4, 132–155 (2012).  https://doi.org/10.1126/scitranslmed.3003396 CrossRefGoogle Scholar
  11. 11.
    Yang, Y., Lin, H., Shen, H., Wang, B., Lei, G., Tuan, R.S.: Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo. Acta Biomater. 69, 71–82 (2018).  https://doi.org/10.1016/j.actbio.2017.12.043 CrossRefGoogle Scholar
  12. 12.
    Zhang, W., Zhu, Y., Li, J., Guo, Q., Peng, J., Liu, S., Yang, J., Wang, Y.: Cell-derived extracellular matrix: basic characteristics and current applications in orthopedic tissue engineering. Tissue Eng. B Rev. 22, 193–207 (2016).  https://doi.org/10.1089/ten.teb.2015.0290 CrossRefGoogle Scholar
  13. 13.
    Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Krause, D.S., Deans, R.J., Keating, A., Prockop, D.J., Horwitz, E.M.: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8, 315–317 (2006).  https://doi.org/10.1080/14653240600855905 CrossRefGoogle Scholar
  14. 14.
    Murphy, M.B., Moncivais, K., Caplan, A.I.: Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine, (2013)Google Scholar
  15. 15.
    Jin, C.Z., Choi, B.H., Park, S.R., Min, B.H.: Cartilage engineering using cell-derived extracellular matrix scaffold in vitro. J. Biomed. Mater. Res. A. 92, 1567–1577 (2010).  https://doi.org/10.1002/jbm.a.32419 Google Scholar
  16. 16.
    Park, Y.B., Seo, S., Kim, J.A., Heo, J.C., Lim, Y.C., Ha, C.W.: Effect of chondrocyte-derived early extracellular matrix on chondrogenesis of placenta-derived mesenchymal stem cells. Biomed. Mater. 10, (2015).  https://doi.org/10.1088/1748-6041/10/3/035014
  17. 17.
    Linhardt, R.J., Toida, T.: Role of glycosaminoglycans in cellular communication. Acc. Chem. Res. 37, 431–438 (2004).  https://doi.org/10.1021/ar030138x CrossRefGoogle Scholar
  18. 18.
    Gasimli, L., Linhardt, R.J., Dordick, J.S.: Proteoglycans in stem cells. Biotechnol. Appl. Biochem. 59, 65–76 (2012).  https://doi.org/10.1002/bab.1002 CrossRefGoogle Scholar
  19. 19.
    Weyers, A., Linhardt, R.J.: Neoproteoglycans in tissue engineering. FEBS J. 280, 2511–2522 (2013).  https://doi.org/10.1111/febs.12187 CrossRefGoogle Scholar
  20. 20.
    Wang, M., Liu, X., Lyu, Z., Gu, H., Li, D., Chen, H.: Glycosaminoglycans (GAGs) and GAG mimetics regulate the behavior of stem cell differentiation. Colloids Surf. B: Biointerfaces. 150, 175–182 (2017).  https://doi.org/10.1016/j.colsurfb.2016.11.022 CrossRefGoogle Scholar
  21. 21.
    Papy-Garcia, D., Albanese, P.: Heparan sulfate proteoglycans as key regulators of the mesenchymal niche of hematopoietic stem cells. Glycoconj. J. 34, 377–391 (2017).  https://doi.org/10.1007/s10719-017-9773-8 CrossRefGoogle Scholar
  22. 22.
    Gasimli, L., Hickey, A.M., Yang, B., Li, G., Dela Rosa, M., Nairn, A.V., Kulik, M.J., Dordick, J.S., Moremen, K.W., Dalton, S., Linhardt, R.J.: Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages. Biochim. Biophys. Acta, Gen. Subj. 1840, 1993–2003 (2014).  https://doi.org/10.1016/j.bbagen.2014.01.007 CrossRefGoogle Scholar
  23. 23.
    Kjellén, L., Lindahl, U.: Specificity of glycosaminoglycan–protein interactions. Curr. Opin. Struct. Biol. 50, 101–108 (2018).  https://doi.org/10.1016/j.sbi.2017.12.011 CrossRefGoogle Scholar
  24. 24.
    Ibrahimi, O.A., Zhang, F., Hrstka, S.C.L., Mohammadi, M., Linhardt, R.J.: Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly. Biochemistry. 43, 4724–4730 (2004).  https://doi.org/10.1021/bi0352320 CrossRefGoogle Scholar
  25. 25.
    Cool, S.M., Nurcombe, V.: The osteoblast-heparan sulfate axis: control of the bone cell lineage. Int. J. Biochem. Cell Biol. 37, 1739–1745 (2005).  https://doi.org/10.1016/j.biocel.2005.03.006 CrossRefGoogle Scholar
  26. 26.
    Uygun, B.E., Stojsih, S.E., Matthew, H.W.T.: Effects of immobilized glycosaminoglycans on the proliferation and differentiation of mesenchymal stem cells. Tissue Eng. A. 15, 3499–3512 (2009).  https://doi.org/10.1089/ten.TEA.2008.0405 CrossRefGoogle Scholar
  27. 27.
    Dombrowski, C., Song, S.J., Chuan, P., Lim, X., Susanto, E., Sawyer, A.A., Woodruff, M.A., Hutmacher, D.W., Nurcombe, V., Cool, S.M.: Heparan sulfate mediates the proliferation and differentiation of rat mesenchymal stem cells. Stem Cells Dev. 18, 661–670 (2009).  https://doi.org/10.1089/scd.2008.0157 CrossRefGoogle Scholar
  28. 28.
    Manton, K.J., Leong, D.F.M., Cool, S.M., Nurcombe, V.: Disruption of heparan and chondroitin sulfate signaling enhances mesenchymal stem cell-derived osteogenic differentiation via bone morphogenetic protein signaling pathways. Stem Cells. 25, 2845–2854 (2007).  https://doi.org/10.1634/stemcells.2007-0065 CrossRefGoogle Scholar
  29. 29.
    Celikkin, N., Rinoldi, C., Costantini, M., Trombetta, M., Rainer, A., Święszkowski, W.: Naturally derived proteins and glycosaminoglycan scaffolds for tissue engineering applications. Mater. Sci. Eng. C. 78, 1277–1299 (2017).  https://doi.org/10.1016/j.msec.2017.04.016 CrossRefGoogle Scholar
  30. 30.
    Pfeifer, C.G., Berner, A., Koch, M., Krutsch, W., Kujat, R., Angele, P., Nerlich, M., Zellner, J.: Higher ratios of hyaluronic acid enhance chondrogenic differentiation of human MSCs in a hyaluronic acid-gelatin composite scaffold. Materials (Basel). 9, (2016).  https://doi.org/10.3390/ma9050381
  31. 31.
    Christiansen-Weber, T., Noskov, A., Cardiff, D., Garitaonandia, I., Dillberger, A., Semechkin, A., Gonzalez, R., Kern, R.: Supplementation of specific carbohydrates results in enhanced deposition of chondrogenic-specific matrix during mesenchymal stem cell differentiation. J. Tissue Eng. Regen. Med. 12, 1261–1272 (2018).  https://doi.org/10.1002/term.2658 CrossRefGoogle Scholar
  32. 32.
    Amann, E., Wolff, P., Breel, E., van Griensven, M., Balmayor, E.R.: Hyaluronic acid facilitates chondrogenesis and matrix deposition of human adipose derived mesenchymal stem cells and human chondrocytes co-cultures. Acta Biomater. 52, 130–144 (2017).  https://doi.org/10.1016/j.actbio.2017.01.064 CrossRefGoogle Scholar
  33. 33.
    Weyers, A., Yang, B., Yoon, D.S., Park, J.-H., Zhang, F., Lee, K.B., Linhardt, R.J.: A structural analysis of Glycosaminoglycans from lethal and nonlethal breast Cancer tissues: toward a novel class of Theragnostics for personalized medicine in oncology? OMICS 16, 79–89 (2012).  https://doi.org/10.1089/omi.2011.0102 CrossRefGoogle Scholar
  34. 34.
    Heiskanen, A., Hirvonen, T., Salo, H., Impola, U., Olonen, A., Laitinen, A., Tiitinen, S., Natunen, S., Aitio, O., Miller-Podraza, H., Wuhrer, M., Deelder, A.M., Natunen, J., Laine, J., Lehenkari, P., Saarinen, J., Satomaa, T., Valmu, L.: Glycomics of bone marrow-derived mesenchymal stem cells can be used to evaluate their cellular differentiation stage. Glycoconj. J. 26, 367–384 (2009).  https://doi.org/10.1007/s10719-008-9217-6 CrossRefGoogle Scholar
  35. 35.
    Hasehira, K., Hirabayashi, J., Tateno, H.: Structural and quantitative evidence of α2–6-sialylated N-glycans as markers of the differentiation potential of human mesenchymal stem cells. Glycoconj. J. 34, 797–806 (2017).  https://doi.org/10.1007/s10719-016-9699-6 CrossRefGoogle Scholar
  36. 36.
    Kubaski, F., Osago, H., Mason, R.W., Yamaguchi, S., Kobayashi, H., Tsuchiya, M., Orii, T., Tomatsu, S.: Glycosaminoglycans detection methods : applications of mass spectrometry. Mol. Genet. Metab. 120, 67–77 (2017).  https://doi.org/10.1016/j.ymgme.2016.09.005 CrossRefGoogle Scholar
  37. 37.
    Sun, X., Li, L., Overdier, K.H., Ammons, L.A., Douglas, I.S., Burlew, C.C., Zhang, F., Schmidt, E.P., Chi, L., Linhardt, R.J.: Analysis of Total human urinary glycosaminoglycan disaccharides by liquid chromatography-tandem mass spectrometry. Anal. Chem. 87, 6220–6227 (2015).  https://doi.org/10.1021/acs.analchem.5b00913 CrossRefGoogle Scholar
  38. 38.
    Oguma, T., Tomatsu, S., Montano, A.M., Okazaki, O.: Analytical method for the determination of disaccharides derived from keratan, heparan, and dermatan sulfates in human serum and plasma by high-performance liquid chromatography/turbo ionspray ionization tandem mass spectrometry. Anal. Biochem. 368, 79–86 (2007).  https://doi.org/10.1016/j.ab.2007.05.016 CrossRefGoogle Scholar
  39. 39.
    Wang, C., Lang, Y., Li, Q., Jin, X., Li, G., Yu, G.: Glycosaminoglycanomic profiling of human milk in different stages of lactation by liquid chromatography-tandem mass spectrometry. Food Chem. 258, 231–236 (2018).  https://doi.org/10.1016/j.foodchem.2018.03.076 CrossRefGoogle Scholar
  40. 40.
    Li, G., Li, L., Tian, F., Zhang, L., Xue, C., Linhardt, R.J.: Glycosaminoglycanomics of cultured cells using a rapid and sensitive LC-MS/MS approach. ACS Chem. Biol. 10, 1303–1310 (2015).  https://doi.org/10.1021/acschembio.5b00011 CrossRefGoogle Scholar
  41. 41.
    Liu, X., Krishnamoorthy, D., Lin, L., Xue, P., Zhang, F., Chi, L., Linhardt, R.J., Iatridis, J.C.: A method for characterising human intervertebral disc glycosaminoglycan disaccharides using liquid chromatography-mass spectrometry with multiple reaction monitoring. Eur. Cell. Mater. 35, 117–131 (2018).  https://doi.org/10.22203/eCM.v035a09 CrossRefGoogle Scholar
  42. 42.
    Dos Santos, F., Andrade, P.Z., Boura, J.S., Abecasis, M.M., da Silva, C.L., Cabral, J.M.S.: Ex vivo expansion of human mesenchymal stem cells: a more effective cell proliferation kinetics and metabolism under hypoxia. J. Cell. Physiol. 223, 27–35 (2010).  https://doi.org/10.1002/jcp.21987 Google Scholar
  43. 43.
    Santhagunam, A., Dos Santos, F., Madeira, C., Salgueiro, J.B., Cabral, J.M.S.: Isolation and ex vivo expansion of synovial mesenchymal stromal cells for cartilage repair. Cytotherapy. 16, 440–453 (2013).  https://doi.org/10.1016/j.jcyt.2013.10.010 CrossRefGoogle Scholar
  44. 44.
    Guneta, V., Zhou, Z., Tan, N.S., Sugii, S., Wong, M.T.C., Choong, C.: Recellularization of decellularized adipose tissue-derived stem cells: role of the cell-secreted extracellular matrix in cellular differentiation. Biomater. Sci. 6, 168–178 (2018).  https://doi.org/10.1039/c7bm00695k CrossRefGoogle Scholar
  45. 45.
    Hoshiba, T., Lu, H., Kawazoe, N., Yamada, T., Chen, G.: Effects of extracellular matrix proteins in chondrocyte-derived matrices on chondrocyte functions. Biotechnol. Prog. 29, 1331–1336 (2013).  https://doi.org/10.1002/btpr.1780 CrossRefGoogle Scholar
  46. 46.
    Kaukonen, R., Jacquemet, G., Hamidi, H., Ivaska, J.: Cell-derived matrices for studying cell proliferation and directional migration in a complex 3D microenvironment. Nat. Protoc. 12, 2376–2390 (2017).  https://doi.org/10.1038/nprot.2017.107 CrossRefGoogle Scholar
  47. 47.
    Ragelle, H., Naba, A., Larson, B.L., Zhou, F., Prijić, M., Whittaker, C.A., Del Rosario, A., Langer, R., Hynes, R.O., Anderson, D.G.: Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials. 128, 147–159 (2017).  https://doi.org/10.1016/j.biomaterials.2017.03.008 CrossRefGoogle Scholar
  48. 48.
    Knudson, C.B., Knudson, W.: Cartilage proteoglycans. Semin. Cell Dev. Biol. 12, 69–78 (2001).  https://doi.org/10.1007/978-3-319-29568-8_1 CrossRefGoogle Scholar
  49. 49.
    Roughle, P.J.: The structure and function of cartilage Proteoglicans. Eur. Cell. Mater. 12, 92–101 (2006)CrossRefGoogle Scholar
  50. 50.
    Mouw, J.K., Case, N.D., Guldberg, R.E., Plaas, A.H.K., Levenston, M.E.: Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. Osteoarthr. Cartil. 13, 828–836 (2005).  https://doi.org/10.1016/j.joca.2005.04.020 CrossRefGoogle Scholar
  51. 51.
    Lauder, R.M., Huckerby, T.N., Brown, G.M., Bayliss, M.T., Nieduszynski, I.a.: Age-related changes in the sulphation of the chondroitin sulphate linkage region from human articular cartilage aggrecan. Biochem. J. 358, 523–528 (2001).  https://doi.org/10.1042/0264-6021:3580523 CrossRefGoogle Scholar
  52. 52.
    Sharma, A., Rees, D., Roberts, S., Kuiper, N.J.: A case study: glycosaminoglycan profiles of autologous chondrocyte implantation (ACI) tissue improve as the tissue matures. Knee. 24, 149–157 (2017).  https://doi.org/10.1016/j.knee.2016.10.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • João C. Silva
    • 1
    • 2
    • 3
  • Marta S. Carvalho
    • 1
    • 3
    • 4
  • Xiaorui Han
    • 2
  • Ke Xia
    • 2
  • Paiyz E. Mikael
    • 2
  • Joaquim M. S. Cabral
    • 1
    • 3
  • Frederico Castelo Ferreira
    • 1
    • 3
  • Robert J. Linhardt
    • 2
    • 4
    Email author
  1. 1.Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.Department of Chemistry and Chemical Biology, Biological Sciences and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  3. 3.The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  4. 4.Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations