Glycoconjugate Journal

, Volume 36, Issue 1, pp 13–26 | Cite as

Quantitation of Glycopeptides by ESI/MS - size of the peptide part strongly affects the relative proportions and allows discovery of new glycan compositions of Ceruloplasmin

  • Melissa Baerenfaenger
  • Manuela Moritz
  • Bernd MeyerEmail author
Original Article


Significant changes of glycan structures are observed in humans if diseases like cancer, arthritis or inflammation are present. Thus, interest in biomarkers based on glycan structures has rapidly emerged in recent years and monitoring disease specific changes of glycosylation and their quantification is of great interest. Mass spectrometry is most commonly used to characterize and quantify glycopeptides and glycans liberated from the glycoprotein of interest. However, ionization properties of glycopeptides can strongly depend on their composition and can therefore lead to intensities that do not reflect the actual proportions present in the intact glycoprotein. Here we show that an increase in the length of the peptide can lead to a more accurate determination and quantification of the glycans. The four glycosylation sites of human serum ceruloplasmin from 17 different individuals were analyzed using glycopeptides of varying peptide lengths, obtained by action of different proteases and by limited digestion. In most cases, highly sialylated compositions showed an increased relative abundance with increasing peptide length. We observed a relative increase of triantennary glycans of up to a factor of three and, even more, MS peaks corresponding to tetraantennary compositions on ceruloplasmin at glycosite 137N in all 17 samples, which we did not detect using a bottom up approach. The data presented here leads to the conclusion that a middle down - or when possible a top down - approach is favorable for qualitative and quantitative analysis of the glycosylation of glycoproteins.


Glycan quantification Glycopeptide analysis Middle down approach Ceruloplasmin 







sialic acid




Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

10719_2018_9852_MOESM1_ESM.xlsx (69 kb)
ESM 1 (XLSX 68 kb)
10719_2018_9852_MOESM2_ESM.xlsx (125 kb)
ESM 2 (XLSX 125 kb)
10719_2018_9852_MOESM3_ESM.pdf (2.7 mb)
ESM 3 (PDF 2734 kb)


  1. 1.
    Maverakis, E., Kim, K., Shimoda, M., Gershwin, M.E., Patel, F., Wilken, R., Raychaudhuri, S., Ruhaak, L.R., Lebrilla, C.B.: Glycans in the immune system and the altered glycan theory of autoimmunity: a critical review. J. Autoimmun. 57, 1–13 (2015). CrossRefGoogle Scholar
  2. 2.
    Kenan, N., Larsson, A., Axelsson, O., Helander, A.: Changes in transferrin glycosylation during pregnancy may lead to false-positive carbohydrate-deficient transferrin (CDT) results in testing for riskful alcohol consumption. Clin. Chim. Acta. 412(1), 129–133 (2011). CrossRefGoogle Scholar
  3. 3.
    Golka, K., Wiese, A.: Carbohydrate-deficient transferrin (CDT)-a biomarker for long-term alcohol consumption. J. Toxicol. Environ. Health B. 7(4), 319–337 (2004). CrossRefGoogle Scholar
  4. 4.
    Sorvajärvi, K., Blake, J.E., Israel, Y., Niemelä, O.: Sensitivity and specificity of carbohydrate-deficient transferrin as a marker of alcohol abuse are significantly influenced by alterations in serum transferrin: comparison of two methods. Alcohol. Clin. Exp. Res. 20(3), 449–454 (1996). CrossRefGoogle Scholar
  5. 5.
    Yin, H., Lin, Z., Nie, S., Wu, J., Tan, Z., Zhu, J., Dai, J., Feng, Z., Marrero, J., Lubman, D.M.: Mass-selected site-specific Core-Fucosylation of Ceruloplasmin in alcohol-related hepatocellular carcinoma. J. Proteome Res. 13(6), 2887–2896 (2014). CrossRefGoogle Scholar
  6. 6.
    Balmaña, M., Sarrats, A., Llop, E., Barrabés, S., Saldova, R., Ferri, M.J., Figueras, J., Fort, E., de Llorens, R., Rudd, P.M., Peracaula, R.: Identification of potential pancreatic cancer serum markers: increased sialyl-Lewis X on ceruloplasmin. Clin. Chim. Acta. 442, 56–62 (2015). CrossRefGoogle Scholar
  7. 7.
    Bowman, M.J., Zaia, J.: Novel tags for the stable isotopic labeling of carbohydrates and quantitative analysis by mass spectrometry. Anal. Chem. 79(15), 5777–5784 (2007). CrossRefGoogle Scholar
  8. 8.
    Zhang, H., Yan, W., Aebersold, R.: Chemical probes and tandem mass spectrometry: a strategy for the quantitative analysis of proteomes and subproteomes. Curr. Opin. Chem. Biol. 8(1), 66–75 (2004). CrossRefGoogle Scholar
  9. 9.
    Zhang, H., Yi, E.C., Li, X.-j., Mallick, P., Kelly-Spratt, K.S., Masselon, C.D., Camp, D.G., Smith, R.D., Kemp, C.J., Aebersold, R.: High throughput quantitative analysis of serum proteins using Glycopeptide capture and liquid chromatography mass spectrometry. Mol. Cell. Proteomics. 4(2), 144–155 (2005). CrossRefGoogle Scholar
  10. 10.
    Wohlgemuth, J., Karas, M., Eichhorn, T., Hendriks, R., Andrecht, S.: Quantitative site-specific analysis of protein glycosylation by LC-MS using different glycopeptide-enrichment strategies. Anal. Biochem. 395(2), 178–188 (2009). CrossRefGoogle Scholar
  11. 11.
    Hofmann, J., Hahm, H.S., Seeberger, P.H., Pagel, K.: Identification of carbohydrate anomers using ion mobility–mass spectrometry. Nature. 526, 241–244 (2015). CrossRefGoogle Scholar
  12. 12.
    Wuhrer, M., Catalina, M.I., Deelder, A.M., Hokke, C.H.: Glycoproteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr. B. 849(1), 115–128 (2007). CrossRefGoogle Scholar
  13. 13.
    Zaia, J.: Mass spectrometry and Glycomics. OMICS. 14(4), 401–418 (2010). CrossRefGoogle Scholar
  14. 14.
    Ruhaak, L.R., Miyamoto, S., Lebrilla, C.B.: Developments in the identification of glycan biomarkers for the detection of Cancer. Mol. Cell. Proteomics. 12(4), 846–855 (2013). CrossRefGoogle Scholar
  15. 15.
    Aizpurua-Olaizola, O., Sastre Toraño, J., Falcon-Perez, J.M., Williams, C., Reichardt, N., Boons, G.J.: Mass spectrometry for glycan biomarker discovery. TrAC Trends Anal. Chem. 100, 7–14 (2018). CrossRefGoogle Scholar
  16. 16.
    Svarovsky, S.A., Joshi, L.: Cancer glycan biomarkers and their detection – past, present and future. Anal. Methods. 6(12), 3918–3936 (2014). CrossRefGoogle Scholar
  17. 17.
    Gilgunn, S., Conroy, P.J., Saldova, R., Rudd, P.M., O'Kennedy, R.J.: Aberrant PSA glycosylation—a sweet predictor of prostate cancer. Nat. Rev. Urol. 10, 99–107 (2013). CrossRefGoogle Scholar
  18. 18.
    Ercan, A., Cui, J., Chatterton, D.E.W., Deane, K.D., Hazen, M.M., Brintnell, W., O'Donnell, C.I., Derber, L.A., Weinblatt, M.E., Shadick, N.A., Bell, D.A., Cairns, E., Solomon, D.H., Holers, V.M., Rudd, P.M., Lee, D.M.: Aberrant IgG galactosylation precedes disease onset, correlates with disease activity, and is prevalent in autoantibodies in rheumatoid arthritis. Arthritis Rheum. 62(8), 2239–2248 (2010). CrossRefGoogle Scholar
  19. 19.
    Han, L., Costello, C.E.: Mass spectrometry of Glycans. Biochemistry. Biokhimiia. 78(7), 710–720 (2013). CrossRefGoogle Scholar
  20. 20.
    Wada, Y., Azadi, P., Costello, C.E., Dell, A., Dwek, R.A., Geyer, H., Geyer, R., Kakehi, K., Karlsson, N.G., Kato, K., Kawasaki, N., Khoo, K.-H., Kim, S., Kondo, A., Lattova, E., Mechref, Y., Miyoshi, E., Nakamura, K., Narimatsu, H., Novotny, M.V., Packer, N.H., Perreault, H., Peter-Katalinić, J., Pohlentz, G., Reinhold, V.N., Rudd, P.M., Suzuki, A., Taniguchi, N.: Comparison of the methods for profiling glycoprotein glycans—HUPO human disease Glycomics/proteome initiative multi-institutional study. Glycobiology. 17(4), 411–422 (2007). CrossRefGoogle Scholar
  21. 21.
    Grünwald-Gruber, C., Thader, A., Maresch, D., Dalik, T., Altmann, F.: Determination of true ratios of different N-glycan structures in electrospray ionization mass spectrometry. Anal. Bioanal. Chem. 409(10), 2519–2530 (2017). CrossRefGoogle Scholar
  22. 22.
    Walker, S.H., Papas, B.N., Comins, D.L., Muddiman, D.C.: The interplay of permanent charge and hydrophobicity in the electrospray ionization of Glycans. Anal. Chem. 82(15), 6636–6642 (2010). CrossRefGoogle Scholar
  23. 23.
    Harvey, D.J.: Quantitative aspects of the matrix-assisted laser desorption mass spectrometry of complex oligosaccharides. Rapid Commun. Mass Spectrom. 7(7), 614–619 (1993). CrossRefGoogle Scholar
  24. 24.
    Chen, F.-T.A., Dobashi, T.S., Evangelista, R.A.: Quantitative analysis of sugar constituents of glycoproteins by capillary electrophoresis. Glycobiology. 8(11), 1045–1052 (1998). CrossRefGoogle Scholar
  25. 25.
    Yamashita, K., Liang, C.J., Funakoshi, S., Kobata, A.: Structural studies of asparagine-linked sugar chains of human ceruloplasmin. Structural characteristics of the triantennary complex type sugar chains of human plasma glycoproteins. J. Biol. Chem. 256(3), 1283–1289 (1981)Google Scholar
  26. 26.
    Endo, M., Suzuki, K., Schmid, K., Fournet, B., Karamanos, Y., Montreuil, J., Dorland, L., van Halbeek, H., Vliegenthart, J.F.: The structures and microheterogeneity of the carbohydrate chains of human plasma ceruloplasmin. A study employing 500-MHz 1H-NMR spectroscopy. J. Biol. Chem. 257(15), 8755–8760 (1982)Google Scholar
  27. 27.
    Bielli, P., Calabrese, L.: Structure to function relationships in ceruloplasmin: a 'moonlighting' protein. Cell. Mol. Life Sci. 59(9), 1413–1427 (2002). CrossRefGoogle Scholar
  28. 28.
    Sogabe, M., Nozaki, H., Tanaka, N., Kubota, T., Kaji, H., Kuno, A., Togayachi, A., Gotoh, M., Nakanishi, H., Nakanishi, T., Mikami, M., Suzuki, N., Kiguchi, K., Ikehara, Y., Narimatsu, H.: Novel Glycobiomarker for ovarian Cancer that detects clear cell carcinoma. J. Proteome Res. 13(3), 1624–1635 (2014). CrossRefGoogle Scholar
  29. 29.
    Harazono, A., Kawasaki, N., Itoh, S., Hashii, N., Ishii-Watabe, A., Kawanishi, T., Hayakawa, T.: Site-specific N-glycosylation analysis of human plasma ceruloplasmin using liquid chromatography with electrospray ionization tandem mass spectrometry. Anal. Biochem. 348(2), 259–268 (2006). CrossRefGoogle Scholar
  30. 30.
    Burkhart, J.M., Schumbrutzki, C., Wortelkamp, S., Sickmann, A., Zahedi, R.P.: Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS-based proteomics. J. Proteome. 75(4), 1454–1462 (2012). CrossRefGoogle Scholar
  31. 31.
    Bento, I., Peixoto, C., Zaitsev, V.N., Lindley, P.F.: Ceruloplasmin revisited: structural and functional roles of various metal cation-binding sites. Acta Crystallogr. D Biol. Crystallogr. 63(Pt 2), 240–248 (2007). CrossRefGoogle Scholar
  32. 32.
    Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1), 105–132 (1982). CrossRefGoogle Scholar
  33. 33.
    Clerc, F., Reiding, K.R., Jansen, B.C., Kammeijer, G.S.M., Bondt, A., Wuhrer, M.: Human plasma protein N-glycosylation. Glycoconj. J. 33(3), 309–343 (2016). CrossRefGoogle Scholar
  34. 34.
    Guthals, A., Bandeira, N.: Peptide identification by tandem mass spectrometry with alternate fragmentation modes. Mol. Cell. Proteomics. 11(9), 550–557 (2012). CrossRefGoogle Scholar
  35. 35.
    Huang, Y., Triscari, J.M., Tseng, G.C., Pasa-Tolic, L., Lipton, M.S., Smith, R.D., Wysocki, V.H.: Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns. Anal. Chem. 77(18), 5800–5813 (2005). CrossRefGoogle Scholar
  36. 36.
    Harrison, A.G.: Energy-resolved mass spectrometry: a comparison of quadrupole cell and cone-voltage collision-induced dissociation. Rapid Commun. Mass Spectrom. 13(16), 1663–1670 (1999).<1663::AID-RCM695>3.0.CO;2-T CrossRefGoogle Scholar
  37. 37.
    Hiroshi, M., Toshifumi, T., Yasutsugu, S., Takekiyo, M.: Optimization of skimmer voltages of an electrospray ion source coupled with a magnetic sector instrument. Rapid Commun. Mass Spectrom. 8(2), 205–210 (1994). CrossRefGoogle Scholar
  38. 38.
    Lin, C.-H., Krisp, C., Packer, N.H., Molloy, M.P.: Development of a data independent acquisition mass spectrometry workflow to enable glycopeptide analysis without predefined glycan compositional knowledge. J. Proteome. 172, 68–75 (2018). CrossRefGoogle Scholar
  39. 39.
    Zacchi, L.F., Schulz, B.L.: SWATH-MS Glycoproteomics reveals consequences of defects in the glycosylation machinery. Mol. Cell. Proteomics. 15(7), 2435–2447 (2016). CrossRefGoogle Scholar
  40. 40.
    Yeo, K.Y.B., Chrysanthopoulos, P.K., Nouwens, A.S., Marcellin, E., Schulz, B.L.: High-performance targeted mass spectrometry with precision data-independent acquisition reveals site-specific glycosylation macroheterogeneity. Anal. Biochem. 510, 106–113 (2016). CrossRefGoogle Scholar
  41. 41.
    Tsou, C.-C., Avtonomov, D., Larsen, B., Tucholska, M., Choi, H., Gingras, A.-C., Nesvizhskii, A.I.: DIA-umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat. Methods. 12, 258–264 (2015). CrossRefGoogle Scholar
  42. 42.
    MacLean, B., Tomazela, D.M., Shulman, N., Chambers, M., Finney, G.L., Frewen, B., Kern, R., Tabb, D.L., Liebler, D.C., MacCoss, M.J.: Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 26(7), 966–968 (2010). CrossRefGoogle Scholar
  43. 43.
    Gillet, L.C., Navarro, P., Tate, S., Röst, H., Selevsek, N., Reiter, L., Bonner, R., Aebersold, R.: Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics. 11(6), O111.016717 (2012). CrossRefGoogle Scholar
  44. 44.
    Yang, Y., Wang, G., Song, T., Lebrilla, C.B., Heck, A.J.R.: Resolving the micro-heterogeneity and structural integrity of monoclonal antibodies by hybrid mass spectrometric approaches. mAbs. 9(4), 638–645 (2017). CrossRefGoogle Scholar
  45. 45.
    Sinha, S., Pipes, G., Topp, E.M., Bondarenko, P.V., Treuheit, M.J., Gadgil, H.S.: Comparison of LC and LC/MS methods for quantifying N-glycosylation in recombinant IgGs. J. Am. Soc. Mass Spectrom. 19(11), 1643–1654 (2008). CrossRefGoogle Scholar
  46. 46.
    Tipton, J.D., Tran, J.C., Catherman, A.D., Ahlf, D.R., Durbin, K.R., Kelleher, N.L.: Analysis of intact protein isoforms by mass spectrometry. J. Biol. Chem. 286(29), 25451–25458 (2011). CrossRefGoogle Scholar
  47. 47.
    Hochstrasser, H., Bauer, P., Walter, U., Behnke, S., Spiegel, J., Csoti, I., Zeiler, B., Bornemann, A., Pahnke, J., Becker, G., Riess, O., Berg, D.: Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson disease. Neurology. 63(10), 1912–1917 (2004). CrossRefGoogle Scholar
  48. 48.
    Hochstrasser, H., Tomiuk, J., Walter, U., Behnke, S., Spiegel, J., Krüger, R., Becker, G., Riess, O., Berg, D.: Functional relevance of ceruloplasmin mutations in Parkinson’s disease. FASEB J. 19(13), 1851–1853 (2005). CrossRefGoogle Scholar
  49. 49.
    Leymarie, N., Griffin, P.J., Jonscher, K., Kolarich, D., Orlando, R., McComb, M., Zaia, J., Aguilan, J., Alley, W.R., Altmann, F., Ball, L.E., Basumallick, L., Bazemore-Walker, C.R., Behnken, H., Blank, M.A., Brown, K.J., Bunz, S.-C., Cairo, C.W., Cipollo, J.F., Daneshfar, R., Desaire, H., Drake, R.R., Go, E.P., Goldman, R., Gruber, C., Halim, A., Hathout, Y., Hensbergen, P.J., Horn, D.M., Hurum, D., Jabs, W., Larson, G., Ly, M., Mann, B.F., Marx, K., Mechref, Y., Meyer, B., Möginger, U., Neusüβ, C., Nilsson, J., Novotny, M.V., Nyalwidhe, J.O., Packer, N.H., Pompach, P., Reiz, B., Resemann, A., Rohrer, J.S., Ruthenbeck, A., Sanda, M., Schulz, J.M., Schweiger-Hufnagel, U., Sihlbom, C., Song, E., Staples, G.O., Suckau, D., Tang, H., Thaysen-Andersen, M., Viner, R.I., An, Y., Valmu, L., Wada, Y., Watson, M., Windwarder, M., Whittal, R., Wuhrer, M., Zhu, Y., Zou, C.: Interlaboratory study on differential analysis of protein glycosylation by mass spectrometry: the ABRF glycoprotein research multi-institutional study 2012. Mol. Cell. Proteomics. 12(10), 2935–2951 (2013). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Organic Chemistry, Department of ChemistryUniversity of HamburgHamburgGermany

Personalised recommendations