Glycoconjugate Journal

, Volume 35, Issue 6, pp 525–535 | Cite as

Identification and characterization of the 4-epimerase AglW from the archaeon Methanococcus maripaludis

  • Sulav Sharma
  • Yan Ding
  • Ken F. Jarrell
  • Inka BrockhausenEmail author
Original Article


Archaea are ubiquitous single-cell microorganisms that have often adapted to harsh conditions and play important roles in biogeochemical cycles with potential applications in biotechnology. Methanococcus maripaludis, a methane-producing archaeon, is motile through multiple archaella on its cell surface. The major structural proteins (archaellins) of the archaellum are glycoproteins, modified with N-linked tetrasaccharides that are essential for the proper assembly and function of archaella. The aglW gene, encoding the putative 4-epimerase AglW, plays a key role in the synthesis of the tetrasaccharide. The goal of our work was to biochemically demonstrate the 4-epimerase activity of AglW, and to develop assays to determine its substrate specificity and properties. We carried out assays using UDP-Galactose, UDP-Glucose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and N-acetylglucosamine/N-acetylgalactosamine-diphosphate – lipid as substrates, coupled with specific glycosyltransferases. We showed that AglW has a broad specificity towards UDP-sugars and that Tyr151 within a conserved YxxxK sequon is essential for the 4-epimerase function of AglW. The glycosyltransferase-coupled assays are generally useful for the identification and specificity studies of novel 4-epimerases.


Archaea N-glycosylation 4-epimerase Coupled assays Glycosyltransferases Specificity 



This research was supported by Discovery Grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) to I.B and to K.F.J.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10719_2018_9845_MOESM1_ESM.pdf (636 kb)
ESM 1 (PDF 636 kb)


  1. 1.
    Chaban, B., Ng, S.Y., Kanbe, M., Saltzman, I., Nimmo, G., Aizawa, S., Jarrell, K.F.: Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus maripaludis. Mol. Microbiol. 66, 596–609 (2007)CrossRefGoogle Scholar
  2. 2.
    Stahl, D.A., de la Torre, J.R.: Physiology and diversity of ammonia-oxidizing archaea. Annu. Rev. Microbiol. 66, 83–101 (2012)CrossRefGoogle Scholar
  3. 3.
    Offre, P., Spang, A., Schleper, C.: Archaea in biogeochemical cycles. Annu. Rev. Microbiol. 67, 437–457 (2013)CrossRefGoogle Scholar
  4. 4.
    Enzmann, F., Mayer, F., Rother, M., Holtmann, D.: Methanogens: biochemical background and biotechnological applications. AMB Express. 8, 1–22 (2018)CrossRefGoogle Scholar
  5. 5.
    Fortunato, C.S., Larson, B., Butterfield, D.A., Huber, J.A.: Spatially distinct, temporally stable microbial populations mediate biogeochemical cycling at and below the seafloor in hydrothermal vent fluids. Environ. Microbiol. 20, 769–784 (2018)CrossRefGoogle Scholar
  6. 6.
    Jones, W.J., Paynter, M.J.B., Gupta, R.: Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch. Microbiol. 135, 91–97 (1983)CrossRefGoogle Scholar
  7. 7.
    Jarrell, K.F., Ding, Y., Meyer, B.H., Albers, S.-V., Kaminski, L., Eichler, J.: N-linked glycosylation in archaea: a structural, functional, and genetic analysis. Microbiol. Mol. Biol. Rev. 78, 304–341 (2014)CrossRefGoogle Scholar
  8. 8.
    Ding, Y., Jones, G.M., Uchida, K., Aizawa, S.-I., Robotham, A., Logan, S.M., Kelly, J., Jarrell, K.F.: Identification of genes involved in the biosynthesis of the third and fourth sugars of the Methanococcus maripaludis archaellin N-linked tetrasaccharide. J. Bacteriol. 195, 4094–4104 (2013)CrossRefGoogle Scholar
  9. 9.
    Moore, B.C., Leigh, J.A.: Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease. J. Bacteriol. 187, 972–979 (2005)CrossRefGoogle Scholar
  10. 10.
    Albers, S.V., Jarrell, K.F.: The archaellum: an update on the unique archaeal motility structure. Trends Microbiol. 26, 351–362 (2018)CrossRefGoogle Scholar
  11. 11.
    Siu, S., Robotham, A., Logan, S.M., Kelly, J.F., Uchida, K., Aizawa, S.-I., Jarrell, K.F.: Evidence that biosynthesis of the second and third sugars of the archaellin tetrasaccharide in the archaeon Methanococcus maripaludis occurs by the same pathway used by Pseudomonas aeruginosa to make a di-N-acetylated sugar. J. Bacteriol. 197, 1668–1680 (2015)CrossRefGoogle Scholar
  12. 12.
    Ding, Y., Jones, G.M., Brimacombe, C., Uchida, K., Aizawa, S.-I., Logan, S.M., Kelly, J.F., Jarrell, K.F.: Identification of a gene involved in the biosynthesis pathway of the terminal sugar of the archaellin N-linked tetrasaccharide in Methanococcus maripaludis. Antonie van Leeuwenhoek. 109, 131–148 (2016)CrossRefGoogle Scholar
  13. 13.
    Kelly, J., Logan, S.M., Jarrell, K.F., VanDyke, D.J., Vinogradov, E.: A novel N-linked flagellar glycan from Methanococcus maripaludis. Carbohydr. Res. 344, 648–653 (2009)CrossRefGoogle Scholar
  14. 14.
    Ding, Y., Uchida, K., Aizawa, S.-I., Murphy, K., Berezuk, A., Khursigara, C.M., Chong, J.P.J., Jarrell, K.F.: Effects of N-glycosylation site removal in Archaellins on the assembly and function of Archaella in Methanococcus maripaludis. PLoS One. 10(2) e0116402), 1–23 (2015)Google Scholar
  15. 15.
    VanDyke, D.J., Wu, J., Logan, S.M., Kelly, J.F., Mizuno, S., Aizawa, S.-I., Jarrell, K.F.: Identification of genes involved in the assembly and attachment of a novel flagellin N-linked tetrasaccharide important for motility in the archaeon Methanococcus maripaludis. Mol. Microbiol. 72, 633–644 (2009)CrossRefGoogle Scholar
  16. 16.
    Westman, E.L., McNally, D.J., Charchoglyan, A., Brewer, D., Field, R.A., Lam, J.S.: Characterization of WbpB, WbpE, and WbpD and reconstitution of a pathway for the biosynthesis of UDP-2,3-diacetamido-2,3-dideoxy-D-mannuronic acid in Pseudomonas aeruginosa. J. Biol. Chem. 284, 11854–11862 (2009)CrossRefGoogle Scholar
  17. 17.
    Jones, G.M., Wu, J., Ding, Y., Uchida, K., Aizawa, S.-I., Robotham, A., Logan, S.M., Kelly, J., Jarrell, K.F.: Identification of genes involved in the acetamidino group modification of the flagellin N-linked glycan of Methanococcus maripaludis. J. Bacteriol. 194, 2693–2702 (2012)CrossRefGoogle Scholar
  18. 18.
    Guo, H., Li, L., Wang, P.G.: Biochemical characterization of UDP-GlcNAc/Glc 4-epimerase from Escherichia coli O86:B7. Biochemistry. 45, 13760–13768 (2006)CrossRefGoogle Scholar
  19. 19.
    Schulz, J.M., Watson, A.L., Sanders, R., Ross, K.L., Thoden, J.B., Holden, H.M., Fridovich-Keil, J.L.: Determinants of function and substrate specificity in human UDP-galactose 4′-epimerase. J. Biol. Chem. 279, 32796–32803 (2004)CrossRefGoogle Scholar
  20. 20.
    Bengoechea, J.A., Pinta, E., Salminen, T., Oertelt, C., Holst, O., Radziejewska-Lebrecht, J., Piotrowska-Seget, Z., Venho, R., Skurnik, M.: Functional characterization of Gne (UDP-N-Acetylglucosamine-4-epimerase), Wzz (chain length determinant), and Wzy (O-antigen polymerase) of Yersinia enterocolitica serotype O:8. J. Bacteriol. 184, 4277–4287 (2002)CrossRefGoogle Scholar
  21. 21.
    Ishiyama, N., Creuzenet, C., Lam, J.S., Berghuis, A.M.: Crystal structure of WbpP, a genuine UDP-N-acetylglucosamine 4-epimerase from Pseudomonas aeruginosa substrate specificity in UDP-hexose 4-epimerases. J. Biol. Chem. 279, 22635–22642 (2004)CrossRefGoogle Scholar
  22. 22.
    Bhatt, V.S., Guan, W., Xue, M., Yuan, H., Wang, P.G.: Insights into role of the hydrogen bond networks in substrate recognition by UDP-GalNAc 4-epimerases. Biochem. Biophys. Res. Commun. 412, 232–237 (2011)CrossRefGoogle Scholar
  23. 23.
    Rush, J.S., Alaimo, C., Robbiani, R., Wacker, M., Waechter, C.J.: A novel epimerase that converts GlcNAc-P-P-undecaprenol to GalNAc-P-P-undecaprenol in Escherichia coli O157. J. Biol. Chem. 285, 1671–1680 (2010)CrossRefGoogle Scholar
  24. 24.
    Cunneen, M.M., Liu, B., Wang, L., Reeves, P.R.: Biosynthesis of UDP-GlcNAc, UndPP-GlcNAc and UDP-GlcNAcA involves three easily distinguished 4-epimerase enzymes, Gne, gnu and GnaB. PLoS One. 8(6) e67646), 1–9 (2013)CrossRefGoogle Scholar
  25. 25.
    Beerens, K., Soetaert, W., Desmet, T.: UDP-hexose 4-epimerases: a view on structure, mechanism and substrate specificity. Carbohydr. Res. 414, 8–14 (2015)CrossRefGoogle Scholar
  26. 26.
    Wang, S., Czuchry, D., Liu, B., Vinnikova, A., Gao, Y., Vlahakis, J.Z., Szarek, W.A., Feng, L., Wang, L., Brockhausen, I.: Characterization of two UDP-gal: GalNAc-diphosphate-lipid β1,3-galactosyltransferases WbwC from Escherichia coli serotypes O104 and O5. J. Bacteriol. 196, 3122–3133 (2014)CrossRefGoogle Scholar
  27. 27.
    Gao, Y., Liu, B., Strum, S., Schutzbach, J., Druzhinina, T.N., Utkina, N.S., Torgov, V.I., Danilov, L.L., Veselovsky, V.V., Vlahakis, J.Z., Szarek, W.A., Wang, L., Brockhausen, I.: Biochemical characterization of WbdN, a beta1,3-glucosyltransferase involved in O-antigen synthesis in enterohemorrhagic Escherichia coli O157. Glycobiology. 22, 1092–1102 (2012)CrossRefGoogle Scholar
  28. 28.
    Xu, C., Liu, B., Hu, B., Han, Y., Feng, L., Allingham, J., Szarek, W.A., Wang, L., Brockhausen, I.: Biochemical characterization of UDP-gal:GlcNAc-pyrophosphate-lipid beta1,4-galactosyltransferase WfeD, a new enzyme from Shigella boydii type 14 that catalyzes the second step in O-antigen repeating unit synthesis. J. Bacteriol. 193, 449–459 (2011)CrossRefGoogle Scholar
  29. 29.
    Piller, F., Hanlon, M.H., Hill, R.L.: Co-purification and characterization of UDP-glucose 4-epimerase and UDP-N-acetylglucosamine 4-epimerase from porcine submaxillary glands. J. Biol. Chem. 258, 10774–10778 (1983)PubMedGoogle Scholar
  30. 30.
    Brockhausen, I., Benn, M., Bhat, S., Marone, S., Riley, J.G., Montoya-Peleaz, P., Vlahakis, J.Z., Paulsen, H., Schutzbach, J.S., Szarek, W.A.: UDP-gal: GlcNAc-R beta1,4-galactosyltransferase a target enzyme for drug design. Acceptor specificity and inhibition of the enzyme. Glycoconj. J. 23, 525–541 (2006)CrossRefGoogle Scholar
  31. 31.
    Reck, F., Springer, M., Meinjohanns, E., Paulsen, H., Brockhausen, I., Schachter, H.: Synthetic substrate analogues for UDP-GlcNAc: Man alpha1-3R beta1-2-N-acetylglucosaminyltransferase I. substrate specificity and inhibitors for the enzyme. Glycoconj. J. 12, 747–754 (1995)CrossRefGoogle Scholar
  32. 32.
    Elhammer, A., Poorman, R., Brown, E., Maggiora, L., Hoogerheide, J., Kézdy, F.: The specificity of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase as inferred from a database of in vivo substrates and from the in vitro glycosylation of proteins and peptides. J. Biol. Chem. 268, 10029–10038 (1993)PubMedGoogle Scholar
  33. 33.
    Brockhausen, I., Dowler, T., Paulsen, H.: Site directed processing: role of amino acid sequences and glycosylation of acceptor glycopeptides in the assembly of extended mucin type O-glycan core 2. Biochim. Biophys. Acta. 1790, 1244–1257 (2009)CrossRefGoogle Scholar
  34. 34.
    Chung, S.K., Ryu, S.I., Lee, S.B.: Characterization of UDP-glucose 4-epimerase from Pyrococcus horikoshii: regeneration of UDP to produce UDP-galactose using two-enzyme system with trehalose. Bioresour. Technol. 110, 423–429 (2012)CrossRefGoogle Scholar
  35. 35.
    Jensen, J.W., Schutzbach, J.S.: Characterization of mannosyl-transfer reactions catalyzed by dolichyl-mannosyl-phosphate-synthase. Carbohydr. Res. 149, 199–208 (1986)CrossRefGoogle Scholar
  36. 36.
    Chen, X., Kowal, P., Hamad, S., Fan, H., Wang, P.G.: Cloning, expression and characterization of a UDP-galactose 4-epimerase from Escherichia coli. Biotechnol. Lett. 21, 1131–1135 (1999)CrossRefGoogle Scholar
  37. 37.
    Thoden, J.B., Henderson, J.M., Fridovich-Keil, J.L., Holden, H.M.: Structural analysis of the Y299C mutant of Escherichia coli UDP-galactose 4-epimerase. Teaching an old dog new tricks. J. Biol. Chem. 277, 27528–27534 (2002)CrossRefGoogle Scholar
  38. 38.
    Shaw, M.P., Bond, C.S., Roper, J.R., Gourley, D.G., Ferguson, M.A.J., Hunter, W.N.: High-resolution crystal structure of Trypanosoma brucei UDP-galactose 4′-epimerase: a potential target for structure-based development of novel trypanocides. Mol. Biochem. Parasitol. 126, 173–180 (2003)CrossRefGoogle Scholar
  39. 39.
    Yoneda, K., Sakuraba, H., Muraoka, I., Oikawa, T., Ohshima, T.: Crystal structure of UDP-galactose 4-epimerase-like l-threonine dehydrogenase belonging to the intermediate short-chain dehydrogenase-reductase superfamily. FEBS J. 277, 5124–5132 (2010)CrossRefGoogle Scholar
  40. 40.
    Islam, S.T., Lam, J.S.: Wzx flippase-mediated membrane translocation of sugar polymer precursors in bacteria. Environ. Microbiol. 15, 1001–1015 (2013)CrossRefGoogle Scholar
  41. 41.
    Sarmiento, F., Mrázek, J., Whitman, W.B.: Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis. Proceed. Nat. Acad. Sci. 110, 4726–4731 (2013)CrossRefGoogle Scholar
  42. 42.
    Voisin, S., Houliston, R.S., Kelly, J., Brisson, J.-R., Watson, D., Bardy, S.L., Jarrell, K.F., Logan, S.M.: Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus voltae. J. Biol. Chem. 280, 16586–16593 (2005)CrossRefGoogle Scholar
  43. 43.
    Chaban, B., Logan, S.M., Kelly, J.F., Jarrell, K.F.: AglC and AglK are involved in biosynthesis and attachment of Diacetylated glucuronic acid to the N-glycan in Methanococcus voltae. J. Bacteriol. 191, 187–195 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical and Molecular SciencesQueen’s UniversityKingstonCanada

Personalised recommendations