Advertisement

Glycoconjugate Journal

, Volume 35, Issue 5, pp 421–432 | Cite as

Peptidoglycan in Mycobacteria: chemistry, biology and intervention

  • Tripti Raghavendra
  • Saniya Patil
  • Raju Mukherjee
Mini-Review

Abstract

Peptidoglycan, a major glycoconjugate in the mycobacterial cell envelope provides strength to resist osmotic stress and plays a pivotal role in maintaining the cellular morphology. Several unique growth stage specific structural alterations occur in its constituent monosaccharides and peptides that allow Mycobacterium to survive nutrient starvation and environmental stress. Here, we discuss the enzymes involved in its intricate biosynthesis that are novel targets for therapeutic intervention and provide an opportunity for potential antibiotic adjuvants. We also revisit the enzymatic steps which are critical for maintaining the equilibrium between peptidoglycan synthesis and hydrolysis during cellular growth and division specifically focused on the importance of cell wall remodelling during “exit from dormancy” in Mycobacterium, a phenomenon with tremendous physiological and therapeutic importance for intervention in mycobacterial infections.

Keywords

Tuberculosis Cell envelope Peptidoglycan Biosynthesis Remodeling 

Notes

Acknowledgements

SP thanks IISER, Tirupati for research fellowship. RM thanks DBT, Govt. of India and IISER, Tirupati for research support. RM is a recipient of Early Career Research Award from SERB, Govt. of India.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    WHO: Global tuberculosis report- 2017, vol. 2017, 2017 ed. WHO, (2017)Google Scholar
  2. 2.
    Brennan, P.J.: Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb) 83(1–3), 91–97 (2003).  https://doi.org/10.1016/S1472-9792(02)00089-6 CrossRefGoogle Scholar
  3. 3.
    Goldman, R.C.: Why are membrane targets discovered by phenotypic screens and genome sequencing in Mycobacterium tuberculosis? Tuberculosis (Edinb). 93(6), 569–588 (2013).  https://doi.org/10.1016/j.tube.2013.09.003 CrossRefGoogle Scholar
  4. 4.
    Hanks, J.H.: Significance of capsular components of Mycobacterium leprae and other mycobacteria. Int. J. Lepr. 29, 74–83 (1961)PubMedGoogle Scholar
  5. 5.
    Daffe, M., Draper, P.: The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39, 131–203 (1998)CrossRefGoogle Scholar
  6. 6.
    Chatterjee, D., Bozic, C.M., McNeil, M., Brennan, P.J.: Structural features of the arabinan component of the lipoarabinomannan of Mycobacterium tuberculosis. J. Biol. Chem. 266(15), 9652–9660 (1991)PubMedGoogle Scholar
  7. 7.
    Lederer, E., Adam, A., Ciorbaru, R., Petit, J.F., Wietzerbin, J.: Cell walls of mycobacteria and related organisms; chemistry and immunostimulant properties. Mol. Cell. Biochem. 7(2), 87–104 (1975)CrossRefGoogle Scholar
  8. 8.
    Jankute, M., Grover, S., Rana, A.K., Besra, G.S.: Arabinogalactan and lipoarabinomannan biosynthesis: structure, biogenesis and their potential as drug targets. Future Microbiol. 7(1), 129–147 (2012).  https://doi.org/10.2217/fmb.11.123 CrossRefPubMedGoogle Scholar
  9. 9.
    Liu, J., Rosenberg, E.Y., Nikaido, H.: Fluidity of the lipid domain of cell wall from Mycobacterium chelonae. Proc. Natl. Acad. Sci. U. S. A. 92(24), 11254–11258 (1995)CrossRefGoogle Scholar
  10. 10.
    Bansal-Mutalik, R., Nikaido, H.: Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc. Natl. Acad. Sci. U. S. A. 111(13), 4958–4963 (2014).  https://doi.org/10.1073/pnas.1403078111 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jackson, M.: The mycobacterial cell envelope-lipids. Cold Spring Harb. Perspect. Med. 4(10), a021105 (2014).  https://doi.org/10.1101/cshperspect.a021105 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Brecik, M., Centarova, I., Mukherjee, R., Kolly, G.S., Huszar, S., Bobovska, A., Kilacskova, E., Mokosova, V., Svetlikova, Z., Sarkan, M., Neres, J., Kordulakova, J., Cole, S.T., Mikusova, K.: DprE1 is a vulnerable tuberculosis drug target due to its cell wall localization. ACS Chem. Biol. 10(7), 1631–1636 (2015).  https://doi.org/10.1021/acschembio.5b00237 CrossRefPubMedGoogle Scholar
  13. 13.
    Makarov, V., Manina, G., Mikusova, K., Mollmann, U., Ryabova, O., Saint-Joanis, B., Dhar, N., Pasca, M.R., Buroni, S., Lucarelli, A.P., Milano, A., De Rossi, E., Belanova, M., Bobovska, A., Dianiskova, P., Kordulakova, J., Sala, C., Fullam, E., Schneider, P., McKinney, J.D., Brodin, P., Christophe, T., Waddell, S., Butcher, P., Albrethsen, J., Rosenkrands, I., Brosch, R., Nandi, V., Bharath, S., Gaonkar, S., Shandil, R.K., Balasubramanian, V., Balganesh, T., Tyagi, S., Grosset, J., Riccardi, G., Cole, S.T.: Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science. 324(5928), 801–804 (2009).  https://doi.org/10.1126/science.1171583 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Christophe, T., Jackson, M., Jeon, H.K., Fenistein, D., Contreras-Dominguez, M., Kim, J., Genovesio, A., Carralot, J.P., Ewann, F., Kim, E.H., Lee, S.Y., Kang, S., Seo, M.J., Park, E.J., Skovierova, H., Pham, H., Riccardi, G., Nam, J.Y., Marsollier, L., Kempf, M., Joly-Guillou, M.L., Oh, T., Shin, W.K., No, Z., Nehrbass, U., Brosch, R., Cole, S.T., Brodin, P.: High content screening identifies decaprenyl-phosphoribose 2′ epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog. 5(10), e1000645 (2009).  https://doi.org/10.1371/journal.ppat.1000645 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Abrahams, K.A., Besra, G.S.: Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target. Parasitology. 145(2), 116–133 (2018).  https://doi.org/10.1017/S0031182016002377 CrossRefPubMedGoogle Scholar
  16. 16.
    Zumla, A., Nahid, P., Cole, S.T.: Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 12(5), 388–404 (2013).  https://doi.org/10.1038/nrd4001 CrossRefPubMedGoogle Scholar
  17. 17.
    Beveridge, T.J.: Mechanism of gram variability in select bacteria. J. Bacteriol. 172(3), 1609–1620 (1990)CrossRefGoogle Scholar
  18. 18.
    Fu, L.M., Fu-Liu, C.S.: Is Mycobacterium tuberculosis a closer relative to gram-positive or gram-negative bacterial pathogens? Tuberculosis (Edinb). 82(2–3), 85–90 (2002)CrossRefGoogle Scholar
  19. 19.
    Niederweis, M., Danilchanka, O., Huff, J., Hoffmann, C., Engelhardt, H.: Mycobacterial outer membranes: in search of proteins. Trends Microbiol. 18(3), 109–116 (2010).  https://doi.org/10.1016/j.tim.2009.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hui, J., Gordon, N., Kajioka, R.: Permeability barrier to rifampin in mycobacteria. Antimicrob. Agents Chemother. 11(5), 773–779 (1977)CrossRefGoogle Scholar
  21. 21.
    Jarlier, V., Nikaido, H.: Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J. Bacteriol. 172(3), 1418–1423 (1990)CrossRefGoogle Scholar
  22. 22.
    Hancock, R.E.: Role of porins in outer membrane permeability. J. Bacteriol. 169(3), 929–933 (1987)CrossRefGoogle Scholar
  23. 23.
    Piddock, L.J., Williams, K.J., Ricci, V.: Accumulation of rifampicin by Mycobacterium aurum, Mycobacterium smegmatis and Mycobacterium tuberculosis. J. Antimicrob. Chemother. 45(2), 159–165 (2000)CrossRefGoogle Scholar
  24. 24.
    Rodriguez-Rivera, F.P., Zhou, X., Theriot, J.A., Bertozzi, C.R.: Visualization of mycobacterial membrane dynamics in live cells. J. Am. Chem. Soc. 139(9), 3488–3495 (2017).  https://doi.org/10.1021/jacs.6b12541 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Crick, D.C., Mahapatra, S., Brennan, P.J.: Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. Glycobiology. 11(9), 107R–118R (2001)CrossRefGoogle Scholar
  26. 26.
    Meroueh, S.O., Bencze, K.Z., Hesek, D., Lee, M., Fisher, J.F., Stemmler, T.L., Mobashery, S.: Three-dimensional structure of the bacterial cell wall peptidoglycan. Proc. Natl. Acad. Sci. U. S. A. 103(12), 4404–4409 (2006).  https://doi.org/10.1073/pnas.0510182103 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hayhurst, E.J., Kailas, L., Hobbs, J.K., Foster, S.J.: Cell wall peptidoglycan architecture in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 105(38), 14603–14608 (2008).  https://doi.org/10.1073/pnas.0804138105 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cabeen, M.T., Jacobs-Wagner, C.: Bacterial cell shape. Nat. Rev. Microbiol. 3(8), 601–610 (2005).  https://doi.org/10.1038/nrmicro1205 CrossRefPubMedGoogle Scholar
  29. 29.
    Davis, K.M., Weiser, J.N.: Modifications to the peptidoglycan backbone help bacteria to establish infection. Infect. Immun. 79(2), 562–570 (2011).  https://doi.org/10.1128/IAI.00651-10 CrossRefPubMedGoogle Scholar
  30. 30.
    Vollmer, W.: Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol. Rev. 32(2), 287–306 (2008).  https://doi.org/10.1111/j.1574-6976.2007.00088.x CrossRefPubMedGoogle Scholar
  31. 31.
    Schleifer, K.H., Kandler, O.: Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36(4), 407–477 (1972)PubMedPubMedCentralGoogle Scholar
  32. 32.
    Mahapatra, S., Scherman, H., Brennan, P.J., Crick, D.C.: N Glycolylation of the nucleotide precursors of peptidoglycan biosynthesis of Mycobacterium spp. is altered by drug treatment. J Bacteriol 187(7), 2341–2347 (2005).  https://doi.org/10.1128/JB.187.7.2341-2347.2005 CrossRefGoogle Scholar
  33. 33.
    Lavollay, M., Arthur, M., Fourgeaud, M., Dubost, L., Marie, A., Veziris, N., Blanot, D., Gutmann, L., Mainardi, J.L.: The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. J. Bacteriol. 190(12), 4360–4366 (2008).  https://doi.org/10.1128/JB.00239-08 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Matsuhashi, M.: Biosynthesis in the bacterial cell wall. Tanpakushitsu Kakusan Koso. 11(10), 875–886 (1966)PubMedGoogle Scholar
  35. 35.
    McNeil, M., Daffe, M., Brennan, P.J.: Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls. J. Biol. Chem. 265(30), 18200–18206 (1990)PubMedGoogle Scholar
  36. 36.
    Mahapatra, S., Crick, D.C., McNeil, M.R., Brennan, P.J.: Unique structural features of the peptidoglycan of Mycobacterium leprae. J. Bacteriol. 190(2), 655–661 (2008).  https://doi.org/10.1128/JB.00982-07 CrossRefPubMedGoogle Scholar
  37. 37.
    Schenk, M., Mahapatra, S., Le, P., Kim, H.J., Choi, A.W., Brennan, P.J., Belisle, J.T., Modlin, R.L.: Human NOD2 recognizes structurally unique Muramyl dipeptides from Mycobacterium leprae. Infect. Immun. 84(9), 2429–2438 (2016).  https://doi.org/10.1128/IAI.00334-16 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Glauner, B., Holtje, J.V., Schwarz, U.: The composition of the murein of Escherichia coli. J. Biol. Chem. 263(21), 10088–10095 (1988)PubMedGoogle Scholar
  39. 39.
    Tran, A.T., Wen, D., West, N.P., Baker, E.N., Britton, W.J., Payne, R.J.: Inhibition studies on Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). Org. Biomol. Chem. 11(46), 8113–8126 (2013).  https://doi.org/10.1039/c3ob41896k CrossRefPubMedGoogle Scholar
  40. 40.
    Li, Y., Zhou, Y., Ma, Y., Li, X.: Design and synthesis of novel cell wall inhibitors of Mycobacterium tuberculosis GlmM and GlmU. Carbohydr. Res. 346(13), 1714–1720 (2011).  https://doi.org/10.1016/j.carres.2011.05.024 CrossRefPubMedGoogle Scholar
  41. 41.
    Rani, C., Mehra, R., Sharma, R., Chib, R., Wazir, P., Nargotra, A., Khan, I.A.: High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU. Tuberculosis (Edinb). 95(6), 664–677 (2015).  https://doi.org/10.1016/j.tube.2015.06.003 CrossRefGoogle Scholar
  42. 42.
    Kumar, V., Saravanan, P., Arvind, A., Mohan, C.G.: Identification of hotspot regions of MurB oxidoreductase enzyme using homology modeling, molecular dynamics and molecular docking techniques. J. Mol. Model. 17(5), 939–953 (2011).  https://doi.org/10.1007/s00894-010-0788-3 CrossRefPubMedGoogle Scholar
  43. 43.
    Rana, A.M., Trivedi, P., Desai, K.R., Jauhari, S.: Novel S-triazine accommodated 5-benzylidino-4-thiazolidinones: synthesis and in vitro biological evaluations. Med. Chem. Res. 23(10), 4320–4336 (2014).  https://doi.org/10.1007/s00044-014-0995-z CrossRefGoogle Scholar
  44. 44.
    Tomasic, T., Zidar, N., Kovac, A., Turk, S., Simcic, M., Blanot, D., Muller-Premru, M., Filipic, M., Grdadolnik, S.G., Zega, A., Anderluh, M., Gobec, S., Kikelj, D., Peterlin Masic, L.: 5-Benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial Mur ligases. ChemMedChem. 5(2), 286–295 (2010).  https://doi.org/10.1002/cmdc.200900449 CrossRefPubMedGoogle Scholar
  45. 45.
    Prosser, G.A., de Carvalho, L.P.: Kinetic mechanism and inhibition of Mycobacterium tuberculosis D-alanine:D-alanine ligase by the antibiotic D-cycloserine. FEBS J. 280(4), 1150–1166 (2013).  https://doi.org/10.1111/febs.12108 CrossRefPubMedGoogle Scholar
  46. 46.
    Siricilla, S., Mitachi, K., Wan, B., Franzblau, S.G., Kurosu, M.: Discovery of a capuramycin analog that kills nonreplicating Mycobacterium tuberculosis and its synergistic effects with translocase I inhibitors. J. Antibiot. (Tokyo). 68(4), 271–278 (2015).  https://doi.org/10.1038/ja.2014.133 CrossRefGoogle Scholar
  47. 47.
    Tran, A.T., Watson, E.E., Pujari, V., Conroy, T., Dowman, L.J., Giltrap, A.M., Pang, A., Wong, W.R., Linington, R.G., Mahapatra, S., Saunders, J., Charman, S.A., West, N.P., Bugg, T.D., Tod, J., Dowson, C.G., Roper, D.I., Crick, D.C., Britton, W.J., Payne, R.J.: Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis. Nat. Commun. 8, 14414 (2017).  https://doi.org/10.1038/ncomms14414 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wiegmann, D., Koppermann, S., Wirth, M., Niro, G., Leyerer, K., Ducho, C.: Muraymycin nucleoside-peptide antibiotics: uridine-derived natural products as lead structures for the development of novel antibacterial agents. Beilstein J. Org. Chem. 12, 769–795 (2016).  https://doi.org/10.3762/bjoc.12.77 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Trunkfield, A.E., Gurcha, S.S., Besra, G.S., Bugg, T.D.: Inhibition of Escherichia coli glycosyltransferase MurG and Mycobacterium tuberculosis Gal transferase by uridine-linked transition state mimics. Bioorg. Med. Chem. 18(7), 2651–2663 (2010).  https://doi.org/10.1016/j.bmc.2010.02.026 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fang, X., Tiyanont, K., Zhang, Y., Wanner, J., Boger, D., Walker, S.: The mechanism of action of ramoplanin and enduracidin. Mol. BioSyst. 2(1), 69–76 (2006).  https://doi.org/10.1039/b515328j CrossRefPubMedGoogle Scholar
  51. 51.
    Ling, L.L., Schneider, T., Peoples, A.J., Spoering, A.L., Engels, I., Conlon, B.P., Mueller, A., Schaberle, T.F., Hughes, D.E., Epstein, S., Jones, M., Lazarides, L., Steadman, V.A., Cohen, D.R., Felix, C.R., Fetterman, K.A., Millett, W.P., Nitti, A.G., Zullo, A.M., Chen, C., Lewis, K.: A new antibiotic kills pathogens without detectable resistance. Nature. 517(7535), 455–459 (2015).  https://doi.org/10.1038/nature14098 CrossRefPubMedGoogle Scholar
  52. 52.
    Kumar, P., Arora, K., Lloyd, J.R., Lee, I.Y., Nair, V., Fischer, E., Boshoff, H.I., Barry 3rd, C.E.: Meropenem inhibits D,D-carboxypeptidase activity in Mycobacterium tuberculosis. Mol. Microbiol. 86(2), 367–381 (2012).  https://doi.org/10.1111/j.1365-2958.2012.08199.x CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Rullas, J., Dhar, N., McKinney, J.D., Garcia-Perez, A., Lelievre, J., Diacon, A.H., Hugonnet, J.E., Arthur, M., Angulo-Barturen, I., Barros-Aguirre, D., Ballell, L.: Combinations of beta-lactam antibiotics currently in clinical trials are efficacious in a DHP-I-deficient mouse model of tuberculosis infection. Antimicrob. Agents Chemother. 59(8), 4997–4999 (2015).  https://doi.org/10.1128/AAC.01063-15 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sham, L.T., Butler, E.K., Lebar, M.D., Kahne, D., Bernhardt, T.G., Ruiz, N.: Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science. 345(6193), 220–222 (2014).  https://doi.org/10.1126/science.1254522 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Li, S., Kang, J., Yu, W., Zhou, Y., Zhang, W., Xin, Y., Ma, Y.: Identification of M. tuberculosis Rv3441c and M. smegmatis MSMEG_1556 and essentiality of M. smegmatis MSMEG_1556. PLoS One. 7(8), e42769 (2012).  https://doi.org/10.1371/journal.pone.0042769 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Durand, P., Golinelli-Pimpaneau, B., Mouilleron, S., Badet, B., Badet-Denisot, M.A.: Highlights of glucosamine-6P synthase catalysis. Arch. Biochem. Biophys. 474(2), 302–317 (2008).  https://doi.org/10.1016/j.abb.2008.01.026 CrossRefPubMedGoogle Scholar
  57. 57.
    Zhang, Z., Bulloch, E.M., Bunker, R.D., Baker, E.N., Squire, C.J.: Structure and function of GlmU from Mycobacterium tuberculosis. Acta Crystallogr. D Biol. Crystallogr. 65(Pt 3), 275–283 (2009).  https://doi.org/10.1107/S0907444909001036 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Jankute, M., Cox, J.A., Harrison, J., Besra, G.S.: Assembly of the mycobacterial cell wall. Annu. Rev. Microbiol. 69, 405–423 (2015).  https://doi.org/10.1146/annurev-micro-091014-104121 CrossRefPubMedGoogle Scholar
  59. 59.
    Raymond, J.B., Mahapatra, S., Crick, D.C., Pavelka Jr., M.S.: Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan. J. Biol. Chem. 280(1), 326–333 (2005).  https://doi.org/10.1074/jbc.M411006200 CrossRefPubMedGoogle Scholar
  60. 60.
    Barreteau, H., Kovac, A., Boniface, A., Sova, M., Gobec, S., Blanot, D.: Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32(2), 168–207 (2008).  https://doi.org/10.1111/j.1574-6976.2008.00104.x CrossRefPubMedGoogle Scholar
  61. 61.
    Feng, Z., Barletta, R.G.: Roles of Mycobacterium smegmatis D-alanine:D-alanine ligase and D-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor D-cycloserine. Antimicrob. Agents Chemother. 47(1), 283–291 (2003)CrossRefGoogle Scholar
  62. 62.
    Li, Y., Mortuza, R., Milligan, D.L., Tran, S.L., Strych, U., Cook, G.M., Krause, K.L.: Investigation of the essentiality of glutamate racemase in Mycobacterium smegmatis. J. Bacteriol. 196(24), 4239–4244 (2014).  https://doi.org/10.1128/JB.02090-14 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Usha, V., Lloyd, A.J., Lovering, A.L., Besra, G.S.: Structure and function of Mycobacterium tuberculosis meso-diaminopimelic acid (DAP) biosynthetic enzymes. FEMS Microbiol. Lett. 330(1), 10–16 (2012).  https://doi.org/10.1111/j.1574-6968.2012.02527.x CrossRefPubMedGoogle Scholar
  64. 64.
    Prosser, G.A., de Carvalho, L.P.: Reinterpreting the mechanism of inhibition of Mycobacterium tuberculosis D-alanine:D-alanine ligase by D-cycloserine. Biochemistry. 52(40), 7145–7149 (2013).  https://doi.org/10.1021/bi400839f CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kurosu, M., Mahapatra, S., Narayanasamy, P., Crick, D.C.: Chemoenzymatic synthesis of Park’s nucleotide: toward the development of high-throughput screening for MraY inhibitors. Tetrahedron Lett. 48(5), 799–803 (2007).  https://doi.org/10.1016/j.tetlet.2006.11.160 CrossRefGoogle Scholar
  66. 66.
    Jha, R.K., Katagihallimath, N., Hota, S.K., Das, K.S., de Sousa, S.M.: An assay for exogenous sources of purified MurG, enabled by the complementation of Escherichia coli murG(Ts) by the Mycobacterium tuberculosis homologue. FEMS Microbiol. Lett. 326(2), 161–167 (2012).  https://doi.org/10.1111/j.1574-6968.2011.02446.x CrossRefPubMedGoogle Scholar
  67. 67.
    Hett, E.C., Chao, M.C., Rubin, E.J.: Interaction and modulation of two antagonistic cell wall enzymes of mycobacteria. PLoS Pathog. 6(7), e1001020 (2010).  https://doi.org/10.1371/journal.ppat.1001020 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Cordillot, M., Dubee, V., Triboulet, S., Dubost, L., Marie, A., Hugonnet, J.E., Arthur, M., Mainardi, J.L.: In vitro cross-linking of Mycobacterium tuberculosis peptidoglycan by L,D-transpeptidases and inactivation of these enzymes by carbapenems. Antimicrob. Agents Chemother. 57(12), 5940–5945 (2013).  https://doi.org/10.1128/AAC.01663-13 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Harrison, J., Lloyd, G., Joe, M., Lowary, T.L., Reynolds, E., Walters-Morgan, H., Bhatt, A., Lovering, A., Besra, G.S., Alderwick, L.J.: Lcp1 is a phosphotransferase responsible for ligating arabinogalactan to peptidoglycan in Mycobacterium tuberculosis. MBio. 7(4), e00972-16 (2016).  https://doi.org/10.1128/mBio.00972-16 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Bera, A., Herbert, S., Jakob, A., Vollmer, W., Gotz, F.: Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol. Microbiol. 55(3), 778–787 (2005).  https://doi.org/10.1111/j.1365-2958.2004.04446.x CrossRefPubMedGoogle Scholar
  71. 71.
    Kieser, K.J., Baranowski, C., Chao, M.C., Long, J.E., Sassetti, C.M., Waldor, M.K., Sacchettini, J.C., Ioerger, T.R., Rubin, E.J.: Peptidoglycan synthesis in Mycobacterium tuberculosis is organized into networks with varying drug susceptibility. Proc. Natl. Acad. Sci. U. S. A. 112(42), 13087–13092 (2015).  https://doi.org/10.1073/pnas.1514135112 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hayashi, J.M., Luo, C.Y., Mayfield, J.A., Hsu, T., Fukuda, T., Walfield, A.L., Giffen, S.R., Leszyk, J.D., Baer, C.E., Bennion, O.T., Madduri, A., Shaffer, S.A., Aldridge, B.B., Sassetti, C.M., Sandler, S.J., Kinoshita, T., Moody, D.B., Morita, Y.S.: Spatially distinct and metabolically active membrane domain in mycobacteria. Proc. Natl. Acad. Sci. U. S. A. 113(19), 5400–5405 (2016).  https://doi.org/10.1073/pnas.1525165113 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Typas, A., Banzhaf, M., Gross, C.A., Vollmer, W.: From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 10(2), 123–136 (2011).  https://doi.org/10.1038/nrmicro2677 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Prigozhin, D.M., Mavrici, D., Huizar, J.P., Vansell, H.J., Alber, T.: Structural and biochemical analyses of Mycobacterium tuberculosis N-acetylmuramyl-L-alanine amidase Rv3717 point to a role in peptidoglycan fragment recycling. J. Biol. Chem. 288(44), 31549–31555 (2013).  https://doi.org/10.1074/jbc.M113.510792 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kieser, K.J., Rubin, E.J.: How sisters grow apart: mycobacterial growth and division. Nat. Rev. Microbiol. 12(8), 550–562 (2014).  https://doi.org/10.1038/nrmicro3299 CrossRefPubMedGoogle Scholar
  76. 76.
    Szwedziak, P., Lowe, J.: Do the divisome and elongasome share a common evolutionary past? Curr. Opin. Microbiol. 16(6), 745–751 (2013).  https://doi.org/10.1016/j.mib.2013.09.003 CrossRefPubMedGoogle Scholar
  77. 77.
    Hett, E.C., Chao, M.C., Steyn, A.J., Fortune, S.M., Deng, L.L., Rubin, E.J.: A partner for the resuscitation-promoting factors of Mycobacterium tuberculosis. Mol. Microbiol. 66(3), 658–668 (2007).  https://doi.org/10.1111/j.1365-2958.2007.05945.x CrossRefPubMedGoogle Scholar
  78. 78.
    Dasgupta, A., Datta, P., Kundu, M., Basu, J.: The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. Microbiology. 152(Pt 2), 493–504 (2006).  https://doi.org/10.1099/mic.0.28630-0 CrossRefPubMedGoogle Scholar
  79. 79.
    Datta, P., Dasgupta, A., Singh, A.K., Mukherjee, P., Kundu, M., Basu, J.: Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Mol Microbiol 62(6), 1655–1673 (2006).  https://doi.org/10.1111/j.1365-2958.2006.05491.x CrossRefGoogle Scholar
  80. 80.
    Meniche, X., Otten, R., Siegrist, M.S., Baer, C.E., Murphy, K.C., Bertozzi, C.R., Sassetti, C.M.: Subpolar addition of new cell wall is directed by DivIVA in mycobacteria. Proc. Natl. Acad. Sci. U. S. A. 111(31), E3243–E3251 (2014).  https://doi.org/10.1073/pnas.1402158111 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Santi, I., Dhar, N., Bousbaine, D., Wakamoto, Y., McKinney, J.D.: Single-cell dynamics of the chromosome replication and cell division cycles in mycobacteria. Nat. Commun. 4, 2470 (2013).  https://doi.org/10.1038/ncomms3470 CrossRefPubMedGoogle Scholar
  82. 82.
    Aldridge, B.B., Fernandez-Suarez, M., Heller, D., Ambravaneswaran, V., Irimia, D., Toner, M., Fortune, S.M.: Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science. 335(6064), 100–104 (2012).  https://doi.org/10.1126/science.1216166 CrossRefPubMedGoogle Scholar
  83. 83.
    Wayne, L.G.: Dormancy of Mycobacterium tuberculosis and latency of disease. Eur. J. Clin. Microbiol. Infect. Dis. 13(11), 908–914 (1994)CrossRefGoogle Scholar
  84. 84.
    Cunningham, A.F., Spreadbury, C.L.: Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton alpha-crystallin homolog. J. Bacteriol. 180(4), 801–808 (1998)PubMedPubMedCentralGoogle Scholar
  85. 85.
    Fang, X., Wallqvist, A., Reifman, J.: Modeling phenotypic metabolic adaptations of Mycobacterium tuberculosis H37Rv under hypoxia. PLoS Comput. Biol. 8(9), e1002688 (2012).  https://doi.org/10.1371/journal.pcbi.1002688 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Doyle, R.J., Chaloupka, J., Vinter, V.: Turnover of cell walls in microorganisms. Microbiol. Rev. 52(4), 554–567 (1988)PubMedPubMedCentralGoogle Scholar
  87. 87.
    Shah, I.M., Laaberki, M.H., Popham, D.L., Dworkin, J.: A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell. 135(3), 486–496 (2008).  https://doi.org/10.1016/j.cell.2008.08.039 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Nikitushkin, V.D., Demina, G.R., Shleeva, M.O., Kaprelyants, A.S.: Peptidoglycan fragments stimulate resuscitation of "non-culturable" mycobacteria. Antonie Van Leeuwenhoek. 103(1), 37–46 (2013).  https://doi.org/10.1007/s10482-012-9784-1 CrossRefPubMedGoogle Scholar
  89. 89.
    Dworkin, J., Shah, I.M.: Exit from dormancy in microbial organisms. Nat. Rev. Microbiol. 8(12), 890–896 (2010).  https://doi.org/10.1038/nrmicro2453 CrossRefPubMedGoogle Scholar
  90. 90.
    Yeats, C., Finn, R.D., Bateman, A.: The PASTA domain: a beta-lactam-binding domain. Trends Biochem. Sci. 27(9), 438 (2002)CrossRefGoogle Scholar
  91. 91.
    Mir, M., Asong, J., Li, X., Cardot, J., Boons, G.J., Husson, R.N.: The extracytoplasmic domain of the Mycobacterium tuberculosis Ser/Thr kinase PknB binds specific muropeptides and is required for PknB localization. PLoS Pathog. 7(7), e1002182 (2011).  https://doi.org/10.1371/journal.ppat.1002182 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Nikitushkin, V.D., Demina, G.R., Shleeva, M.O., Guryanova, S.V., Ruggiero, A., Berisio, R., Kaprelyants, A.S.: A product of RpfB and RipA joint enzymatic action promotes the resuscitation of dormant mycobacteria. FEBS J. 282(13), 2500–2511 (2015).  https://doi.org/10.1111/febs.13292 CrossRefPubMedGoogle Scholar
  93. 93.
    Kana, B.D., Mizrahi, V.: Resuscitation-promoting factors as lytic enzymes for bacterial growth and signaling. FEMS Immunol. Med. Microbiol. 58(1), 39–50 (2010).  https://doi.org/10.1111/j.1574-695X.2009.00606.x CrossRefPubMedGoogle Scholar
  94. 94.
    Eoh, H., Wang, Z., Layre, E., Rath, P., Morris, R., Branch Moody, D., Rhee, K.Y.: Metabolic anticipation in Mycobacterium tuberculosis. Nat. Microbiol. 2, 17084 (2017).  https://doi.org/10.1038/nmicrobiol.2017.84 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Rani, C., Khan, I.A.: UDP-GlcNAc pathway: potential target for inhibitor discovery against M. tuberculosis. Eur. J. Pharm. Sci. 83, 62–70 (2016).  https://doi.org/10.1016/j.ejps.2015.12.013 CrossRefPubMedGoogle Scholar
  96. 96.
    Soni, V., Suryadevara, P., Sriram, D., Consortium, O., Kumar, S., Nandicoori, V.K., Yogeeswari, P.: Structure-based design of diverse inhibitors of Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase: combined molecular docking, dynamic simulation, and biological activity. J. Mol. Model. 21(7), 174 (2015).  https://doi.org/10.1007/s00894-015-2704-3 CrossRefPubMedGoogle Scholar
  97. 97.
    Schumacher, C.E., Harris, P.W.R., Ding, X.B., Krause, B., Wright, T.H., Cook, G.M., Furkert, D.P., Brimble, M.A.: Synthesis and biological evaluation of novel teixobactin analogues. Org. Biomol. Chem. 15(41), 8755–8760 (2017).  https://doi.org/10.1039/c7ob02169k CrossRefPubMedGoogle Scholar
  98. 98.
    Eldholm, V., Pettersson, J.H., Brynildsrud, O.B., Kitchen, A., Rasmussen, E.M., Lillebaek, T., Ronning, J.O., Crudu, V., Mengshoel, A.T., Debech, N., Alfsnes, K., Bohlin, J., Pepperell, C.S., Balloux, F.: Armed conflict and population displacement as drivers of the evolution and dispersal of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 113(48), 13881–13886 (2016).  https://doi.org/10.1073/pnas.1611283113 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Abedon, S.T.: Lysis from without. Bacteriophage. 1(1), 46–49 (2011).  https://doi.org/10.4161/bact.1.1.13980 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Lai, M.J., Liu, C.C., Jiang, S.J., Soo, P.C., Tu, M.H., Lee, J.J., Chen, Y.H., Chang, K.C.: Antimycobacterial activities of Endolysins derived from a Mycobacteriophage, BTCU-1. Molecules. 20(10), 19277–19290 (2015).  https://doi.org/10.3390/molecules201019277 CrossRefPubMedGoogle Scholar
  101. 101.
    Dubee, V., Triboulet, S., Mainardi, J.L., Etheve-Quelquejeu, M., Gutmann, L., Marie, A., Dubost, L., Hugonnet, J.E., Arthur, M.: Inactivation of Mycobacterium tuberculosis l,d-transpeptidase LdtMt(1) by carbapenems and cephalosporins. Antimicrob. Agents Chemother. 56(8), 4189–4195 (2012).  https://doi.org/10.1128/AAC.00665-12 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Mattoo, R., Lloyd, E.P., Kaushik, A., Kumar, P., Brunelle, J.L., Townsend, C.A., Lamichhane, G.: LdtMav2, a nonclassical transpeptidase and susceptibility of Mycobacterium avium to carbapenems. Future Microbiol. 12, 595–607 (2017).  https://doi.org/10.2217/fmb-2016-0208 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Bianchet, M.A., Pan, Y.H., Basta, L.A.B., Saavedra, H., Lloyd, E.P., Kumar, P., Mattoo, R., Townsend, C.A., Lamichhane, G.: Structural insight into the inactivation of Mycobacterium tuberculosis non-classical transpeptidase LdtMt2 by biapenem and tebipenem. BMC Biochem. 18(1), 8 (2017).  https://doi.org/10.1186/s12858-017-0082-4 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Knox, J.R., Moews, P.C., Frere, J.M.: Molecular evolution of bacterial beta-lactam resistance. Chem. Biol. 3(11), 937–947 (1996)CrossRefGoogle Scholar
  105. 105.
    Voladri, R.K., Lakey, D.L., Hennigan, S.H., Menzies, B.E., Edwards, K.M., Kernodle, D.S.: Recombinant expression and characterization of the major beta-lactamase of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 42(6), 1375–1381 (1998)PubMedPubMedCentralGoogle Scholar
  106. 106.
    Flores, A.R., Parsons, L.M., Pavelka Jr., M.S.: Genetic analysis of the beta-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to beta-lactam antibiotics. Microbiology. 151(Pt 2), 521–532 (2005).  https://doi.org/10.1099/mic.0.27629-0 CrossRefPubMedGoogle Scholar
  107. 107.
    Kasik, J.E., Weber, M., Winberg, E., Barclay, W.R.: The synergistic effect of dicloxacillin and penicillin G on murine tuberculosis. Am. Rev. Respir. Dis. 94(2), 260–261 (1966).  https://doi.org/10.1164/arrd.1966.94.2.260 CrossRefPubMedGoogle Scholar
  108. 108.
    Hugonnet, J.E., Tremblay, L.W., Boshoff, H.I., Barry 3rd, C.E., Blanchard, J.S.: Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science. 323(5918), 1215–1218 (2009).  https://doi.org/10.1126/science.1167498 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Chambers, H.F., Moreau, D., Yajko, D., Miick, C., Wagner, C., Hackbarth, C., Kocagoz, S., Rosenberg, E., Hadley, W.K., Nikaido, H.: Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis? Antimicrob. Agents Chemother. 39(12), 2620–2624 (1995)CrossRefGoogle Scholar
  110. 110.
    Zhang, D., Wang, Y., Lu, J., Pang, Y.: In vitro activity of beta-lactams in combination with beta-lactamase inhibitors against multidrug-resistant Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 60(1), 393–399 (2016).  https://doi.org/10.1128/AAC.01035-15 CrossRefPubMedGoogle Scholar
  111. 111.
    Kurz, S.G., Wolff, K.A., Hazra, S., Bethel, C.R., Hujer, A.M., Smith, K.M., Xu, Y., Tremblay, L.W., Blanchard, J.S., Nguyen, L., Bonomo, R.A.: Can inhibitor-resistant substitutions in the Mycobacterium tuberculosis beta-lactamase BlaC lead to clavulanate resistance?: a biochemical rationale for the use of beta-lactam-beta-lactamase inhibitor combinations. Antimicrob. Agents Chemother. 57(12), 6085–6096 (2013).  https://doi.org/10.1128/AAC.01253-13 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Diacon, A.H., van der Merwe, L., Barnard, M., von Groote-Bidlingmaier, F., Lange, C., Garcia-Basteiro, A.L., Sevene, E., Ballell, L., Barros-Aguirre, D.: beta-lactams against tuberculosis--new trick for an old dog? N. Engl. J. Med. 375(4), 393–394 (2016).  https://doi.org/10.1056/NEJMc1513236 CrossRefPubMedGoogle Scholar
  113. 113.
    Mishra, S., Shukla, P., Bhaskar, A., Anand, K., Baloni, P., Jha, R.K., Mohan, A., Rajmani, R.S., Nagaraja, V., Chandra, N., Singh, A.: Efficacy of beta-lactam/beta-lactamase inhibitor combination is linked to WhiB4-mediated changes in redox physiology of Mycobacterium tuberculosis. Elife. 6, e25624 (2017).  https://doi.org/10.7554/eLife.25624 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Ramakrishnan, G., Chandra, N.R., Srinivasan, N.: Recognizing drug targets using evolutionary information: implications for repurposing FDA-approved drugs against Mycobacterium tuberculosis H37Rv. Mol. BioSyst. 11(12), 3316–3331 (2015).  https://doi.org/10.1039/c5mb00476d CrossRefPubMedGoogle Scholar
  115. 115.
    Garcia-Fernandez, E., Koch, G., Wagner, R.M., Fekete, A., Stengel, S.T., Schneider, J., Mielich-Suss, B., Geibel, S., Markert, S.M., Stigloher, C., Lopez, D.: Membrane microdomain disassembly inhibits MRSA antibiotic resistance. Cell. 171(6), 1354–1367 e1320 (2017).  https://doi.org/10.1016/j.cell.2017.10.012 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Eniyan, K., Dharavath, S., Vijayan, R., Bajpai, U., Gourinath, S.: Crystal structure of UDP-N-acetylglucosamine-enolpyruvate reductase (MurB) from Mycobacterium tuberculosis. Biochim. Biophys. Acta. 1866(3), 397–406 (2018).  https://doi.org/10.1016/j.bbapap.2017.11.013 CrossRefGoogle Scholar
  117. 117.
    Singh, V., Dhar, N., Pato, J., Kolly, G.S., Kordulakova, J., Forbak, M., Evans, J.C., Szekely, R., Rybniker, J., Palcekova, Z., Zemanova, J., Santi, I., Signorino-Gelo, F., Rodrigues, L., Vocat, A., Covarrubias, A.S., Rengifo, M.G., Johnsson, K., Mowbray, S., Buechler, J., Delorme, V., Brodin, P., Knott, G.W., Ainsa, J.A., Warner, D.F., Keri, G., Mikusova, K., McKinney, J.D., Cole, S.T., Mizrahi, V., Hartkoorn, R.C.: Identification of aminopyrimidine-sulfonamides as potent modulators of Wag31-mediated cell elongation in mycobacteria. Mol. Microbiol. (2016).  https://doi.org/10.1111/mmi.13535 CrossRefGoogle Scholar
  118. 118.
    Linares, J.F., Gustafsson, I., Baquero, F., Martinez, J.L.: Antibiotics as intermicrobial signaling agents instead of weapons. Proc. Natl. Acad. Sci. U. S. A. 103(51), 19484–19489 (2006).  https://doi.org/10.1073/pnas.0608949103 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    D'Costa, V.M., King, C.E., Kalan, L., Morar, M., Sung, W.W., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G.B., Poinar, H.N., Wright, G.D.: Antibiotic resistance is ancient. Nature. 477(7365), 457–461 (2011).  https://doi.org/10.1038/nature10388 CrossRefPubMedGoogle Scholar
  120. 120.
    Okano, A., Isley, N.A., Boger, D.L.: Peripheral modifications of [Psi[CH2NH]Tpg4]vancomycin with added synergistic mechanisms of action provide durable and potent antibiotics. Proc. Natl. Acad. Sci. U. S. A. (2017).  https://doi.org/10.1073/pnas.1704125114

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tripti Raghavendra
    • 1
  • Saniya Patil
    • 1
  • Raju Mukherjee
    • 1
  1. 1.Department of BiologyIndian Institute of Science Education and Research, TirupatiTirupatiIndia

Personalised recommendations