Advertisement

Glycoconjugate Journal

, Volume 35, Issue 5, pp 451–459 | Cite as

Conjugation of chitosan oligosaccharides via a carrier protein markedly improves immunogenicity of porcine circovirus vaccine

  • Guiqiang Zhang
  • Peiyuan Jia
  • Hongtao Liu
  • Tao Hu
  • Yuguang Du
Original Article
  • 136 Downloads

Abstract

Porcine circovirus type 2 (PCV2)-associated diseases have led to huge economic losses in pig industry. Our laboratory previously found that conjugation of chitosan oligosaccharides (COS) enhanced the immunogenicity of PCV2 vaccine against infectious pathogens. In this study, an effective adjuvant system was developed by covalent conjugation of COS via a carrier protein (Ovalbumin, OVA) to further increase the immunogenicity of vaccine. Its effect on dendritic cells maturation was assessed in vitro and its immunogenicity was investigated in mice. The results indicated that, as compared to the PCV2 and COS-PCV2, COS-OVA-PCV2 stimulated dendritic cells to express higher maturation markers (CD80, CD86, CD40 and MHC class II) and remarkably promoted both humoral and cellular immunity against PCV2 by enhancing the lymphocyte proliferation and inducing a mixed Th1/Th2 response, including the increased production of PCV2-specific antibodies and raised levels of inflammatory cytokines. Furthermore, it displayed better immune-stimulating effects than the physical mixture of vaccine and ISA206 (a commercialized adjuvant). In conclusion, conjugation of COS via a carrier protein might be a promising strategy to enhance the immunogenicity of vaccines.

Keywords

Porcine circovirus type 2 (PCV2) Chitosan oligosaccharide Conjugation Adjuvant system Carrier protein 

Notes

Acknowledgements

We are grateful for the support by the National Key Research and Development Program of China (2017YFD0502303), and by National Natural Science Fund, China (NO. 31500747, NO. 31570801 and NO. U160820020).

Contributors

Yuguang Du and Tao Hu designed the study. Guiqiang Zhang and Peiyuan Jia were responsible for the acquisition of data. Hongtao Liu and Guiqiang Zhang interpreted the experimental data. Guiqiang Zhang and Hongtao Liu were the major contributors in drafting and revising the manuscript. Hongtao Liu was final approval of the version to be submitted. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article contains animal studies, and all animal experiment procedures were approved by the Animal Ethical Experimentation Committee of Institute of Process Engineering, Chinese Academy of Sciences (Beijing, China).

Supplementary material

10719_2018_9830_MOESM1_ESM.pdf (353 kb)
ESM 1 (PDF 353 kb)

References

  1. 1.
    Chang, S.L., Chang, C.L., Chiang, Y.M., Hsieh, R.H., Tzeng, C.R., Wu, T.K., Sytwu, H.K., Shyur, L.F., Yang, W.C.: A review of porcine circovirus 2-associated syndromes and diseases. Vet. J. 169(3), 326–336 (2005)CrossRefGoogle Scholar
  2. 2.
    Pablo, A., Jonathan, R., Barbara, W.: Cost of post-weaning multi-systemic wasting syndrome and porcine circovirus type-2 subclinical infection in England – an economic disease model. Prev. Vet. Med. 110(2), 88 (2013)CrossRefGoogle Scholar
  3. 3.
    Zhang, G., Jia, P., Cheng, G., Jiao, S., Ren, L., Ji, S., Hu, T., Liu, H., Du, Y.: Enhanced immune response to inactivated porcine circovirus type 2 (PCV2) vaccine by conjugation of chitosan oligosaccharides. Carbohydr. Polym. 166, 64 (2017)CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang, G., Cheng, G., Jia, P., Jiao, S., Feng, C., Hu, T., Liu, H., Du, Y.: The positive correlation of the enhanced immune response to PCV2 subunit vaccine by conjugation of chitosan oligosaccharide with the deacetylation degree. Marine Drugs. 15(8), 236 (2017)CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Slütter, B., Soema, P.C., Ding, Z., Verheul, R., Hennink, W., Jiskoot, W.: Conjugation of ovalbumin to trimethyl chitosan improves immunogenicity of the antigen. J. Control. Release. 143(2), 207–214 (2010)CrossRefPubMedGoogle Scholar
  6. 6.
    Maurer, T., Heit, A., Hochrein, H., Ampenberger, F., O'Keeffe, M., Bauer, S., Lipford, G.B., Vabulas, R.M., Wagner, H.: CpG-DNA aided cross-presentation of soluble antigens by dendritic cells. Eur. J. Immunol. 32(8), 2356–2364 (2015)CrossRefGoogle Scholar
  7. 7.
    Mellman, I., Coukos, G., Dranoff, G.: Cancer immunotherapy comes of age. Nat. Clin. Pract. Oncol. 2(3), 115 (2011)Google Scholar
  8. 8.
    Mancini, R.J., Tom, J.K., Esserkahn, A.P.: Covalently coupled immunostimulant heterodimers. Angew. Chem. Int. Ed. Eng. 53(1), 189–192 (2014)CrossRefGoogle Scholar
  9. 9.
    Huang, Q., Yu, W., Hu, T.: Potent antigen-adjuvant delivery system by conjugation of Mycobacterium tuberculosis Ag85B-HspX fusion protein with arabinogalactan-poly(I:C) conjugate. Bioconjug. Chem. 27(4), 1165 (2016)CrossRefPubMedGoogle Scholar
  10. 10.
    Wang, L., Feng, S., An, L., Gu, G., Guo, Z.: Synthetic and immunological studies of mycobacterial Lipoarabinomannan oligosaccharides and their protein conjugates. J. Organomet. Chem. 80(20), 10060–10075 (2015)CrossRefGoogle Scholar
  11. 11.
    Micoli, F., Romano, M.R., Tontini, M., Cappelletti, E., Gavini, M., Proietti, D., Rondini, S., Swennen, E., Santini, L., Filippini, S.: Development of a glycoconjugate vaccine to prevent meningitis in Africa caused by meningococcal serogroup X. Proc. Natl. Acad. Sci. U. S. A. 110(47), 19077 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Verez-Bencomo, V., Fernández-Santana, V., Hardy, E., Toledo, M.E., Rodríguez, M.C., Heynngnezz, L., Rodriguez, A., Baly, A., Herrera, L., Izquierdo, M.: A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type b. Science. 305(5683), 522 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    Munro, C.A., Xin, H., Cartmell, J., Bailey, J.J., Dziadek, S., Bundle, D.R., Cutler, J.E.: Self-Adjuvanting Glycopeptide conjugate vaccine against disseminated candidiasis. PLoS One. 7(4), e35106 (2012).  https://doi.org/10.1371/journal.pone.0035106 CrossRefGoogle Scholar
  14. 14.
    Gause, K.T., Wheatley, A.K., Cui, J., Yan, Y., Kent, S.J., Caruso, F.: Immunological principles guiding the rational Design of Particles for vaccine delivery. ACS Nano. 11(1), 54 (2017)CrossRefPubMedGoogle Scholar
  15. 15.
    Yue, H., Wei, W., Yue, Z., Lv, P., Wang, L., Maaa, G.: Particle size affects the cellular response in macrophages. Eur. J. Pharm. Sci. 41(5), 650 (2010)CrossRefPubMedGoogle Scholar
  16. 16.
    Tontini, M., Berti, F., Romano, M.R., Proietti, D., Zambonelli, C., Bottomley, M.J., De, G.E., Del, G.G., Rappuoli, R., Costantino, P.: Comparison of CRM197, diphtheria toxoid and tetanus toxoid as protein carriers for meningococcal glycoconjugate vaccines. Vaccine. 31(42), 4827–4833 (2013)CrossRefPubMedGoogle Scholar
  17. 17.
    Mwirigi, M., Nkando, I., Olum, M., Attahpoku, S., Ochanda, H., Berberov, E., Potter, A., Gerdts, V., Perezcasal, J., Wesonga, H.: Capsular polysaccharide from mycoplasma mycoides subsp. mycoides shows potential for protection against contagious bovine pleuropneumonia. Vet. Immunol. Immunopathol. 178, 64 (2016)CrossRefPubMedGoogle Scholar
  18. 18.
    Xu, M., Xing, X., Wu, Z., Du, Y., Hu, T.: Molecular shape and immunogenicity of meningococcal polysaccharide group a conjugate vaccine. Vaccine. 33(43), 5815–5821 (2015)CrossRefGoogle Scholar
  19. 19.
    Stefanetti, G., Rondini, S., Lanzilao, L., Saul, A., Maclennan, C.A., Micoli, F.: Impact of conjugation chemistry on the immunogenicity of S. Typhimurium conjugate vaccines. Vaccine. 32(46), 6122 (2014)CrossRefPubMedGoogle Scholar
  20. 20.
    Qiao, W., Ji, S., Zhao, Y., Hu, T.: Conjugation of β-glucan markedly increase the immunogencity of meningococcal group Y polysaccharide conjugate vaccine. Vaccine. 33(17), 2066 (2015)CrossRefPubMedGoogle Scholar
  21. 21.
    Wan, X., Zhang, J., Yu, W., Shen, L., Ji, S., Hu, T.: Effect of protein immunogenicity and PEG size and branching on the anti-PEG immune response to PEGylated proteins. Process Biochem. 52, 183–191 (2017)CrossRefGoogle Scholar
  22. 22.
    Hu, T., Li, D., Wang, J., Wang, Q., Liang, Y., Su, Y., Ma, G., Su, Z., Wang, S.: Propylbenzmethylation at Val-1(α) markedly increases the tetramer stability of the PEGylated hemoglobin: a comparison with propylation at Val-1(α). Biochim. Biophys. Acta. 1820(12), 2044 (2012)CrossRefPubMedGoogle Scholar
  23. 23.
    Donadei, A., Balocchi, C., Mancini, F., Proietti, D., Gallorini, S., O'Hagan, D.T., D'Oro, U., Berti, F., Baudner, B.C., Adamo, R.: The adjuvant effect of TLR7 agonist conjugated to a meningococcal serogroup C glycoconjugate vaccine. Eur. J. Pharm. Biopharm. 107, 110 (2016)CrossRefPubMedGoogle Scholar
  24. 24.
    Gindy, M.E., Ji, S., Hoye, T.R., Panagiotopoulos, A.Z., Prud’Homme, R.K.: Preparation of poly(ethylene glycol) protected nanoparticles with variable bioconjugate ligand density. Biomacromolecules. 9(10), 2705–2711 (2008)CrossRefPubMedGoogle Scholar
  25. 25.
    Gómezlaguna, J., Salguero, F.J., Pallarés, F.J., Fernández, D.M.M., Barranco, I., Cerón, J.J., Martínezsubiela, S., Van, R.K., Carrasco, L.: Acute phase response in porcine reproductive and respiratory syndrome virus infection. Comp. Immunol. Microbiol. Infect. Dis. 33(6), e51 (2010)CrossRefGoogle Scholar
  26. 26.
    Petrovsky, N.: Comparative safety of vaccine adjuvants: a summary of current evidence and future needs. Drug Saf. 38(11), 1059 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Singh, M., O'Hagan, D.: Advances in vaccine adjuvants. Nat. Biotechnol. 17(11), 1075 (1999)CrossRefPubMedGoogle Scholar
  28. 28.
    Liu, X., Zhang, H., Gao, Y., Zhang, Y., Wu, H., Zhang, Y.: Efficacy of chitosan oligosaccharide as aquatic adjuvant administrated with a formalin-inactivated Vibrio anguillarum vaccine. Fish Shellfish Immunol. 47(2), 855–860 (2015)CrossRefPubMedGoogle Scholar
  29. 29.
    Yeh, M.Y., Wu, M.F., Shang, H.S., Chang, J.B., Shih, Y.L., Chen, Y.L., Hung, H.F., Lu, H.F., Yeh, C., Wood, W.G.: Effects of chitosan on xenograft models of melanoma in C57BL/6 mice and hepatoma formation in SCID mice. Anticancer Res. 33(11), 4867 (2013)PubMedGoogle Scholar
  30. 30.
    Dang, Y., Li, S., Wang, W., Wang, S., Zou, M., Guo, Y., Fan, J., Du, Y., Zhang, J.: The effects of chitosan oligosaccharide on the activation of murine spleen CD11c + dendritic cells via toll-like receptor 4. Carbohydr. Polym. 83(3), 1075–1081 (2011)CrossRefGoogle Scholar
  31. 31.
    Jeong, E.J., Maeng, H.J., Lee, H.J., Kim, Y., Kim, C.K.: Effect of adjuvant on pharmacokinetics, organ distribution and humoral immunity of hepatitis b surface antigen after intramuscular injection to rats. Arch. Pharm. Res. 35(9), 1621–1628 (2012)CrossRefPubMedGoogle Scholar
  32. 32.
    Santini, S.M., Di Pucchio, T., Lapenta, C., Parlato, S., Logozzi, M., Belardelli, F.: The natural alliance between type I interferon and dendritic cells and its role in linking innate and adaptive immunity. J. Interf. Cytokine Res. 22(11), 1071–1080 (2002)CrossRefGoogle Scholar
  33. 33.
    Rossi, M., Young, J.W.: Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J. Immunol. 175(3), 1373–1381 (2005)CrossRefPubMedGoogle Scholar
  34. 34.
    Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B., Palucka, K.: Immunobiology of dendritic cells. Annu. Rev. Immunol. 18(1), 767–811 (1999)CrossRefGoogle Scholar
  35. 35.
    Jin, J.O., Zhang, W., Du, J.Y., Yu, Q.: Correction for Jin et al., BDCA1-positive dendritic cells (DCs) represent a unique human myeloid DC subset that induces innate and adaptive immune responses to Staphylococcus aureus infection. Infect. Immun. 83(2), 849 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F., Lanzavecchia, A.: Selected toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 6(8), 769–776 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Flach, T.L., Ng, G., Hari, A., Desrosiers, M.D., Zhang, P., Ward, S.M., Seamone, M.E., Vilaysane, A., Mucsi, A.D., Yin, F.: Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat. Med. 17(4), 479 (2011)CrossRefPubMedGoogle Scholar
  38. 38.
    Ismaili, J., Rennesson, J., Aksoy, E., Vekemans, J., Vincart, B., Amraoui, Z., Van, L.F., Goldman, M., Dubois, P.M.: Monophosphoryl lipid a activates both human dendritic cells and T cells. J. Immunol. 168(2), 926 (2002)CrossRefPubMedGoogle Scholar
  39. 39.
    Porporatto, C., Bianco, I.D., Correa, S.G.: Local and systemic activity of the polysaccharide chitosan at lymphoid tissues after oral administration. J. Leukoc. Biol. 78(1), 62 (2005)CrossRefPubMedGoogle Scholar
  40. 40.
    Fu, Y., Wang, T., Xiu, L., Shi, X., Bian, Z., Zhang, Y., Ruhan, A., Wang, X.: Levamisole promotes murine bone marrow derived dendritic cell activation and drives Th1 immune response in vitro and in vivo. Int. Immunopharmacol. 31, 57–65 (2016)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA and State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations