Advertisement

Glycoconjugate Journal

, Volume 35, Issue 2, pp 205–216 | Cite as

Differential recognition of natural and remodeled glycotopes by three Diocleae lectins

  • Tania M. CortázarEmail author
  • Iain B. H. Wilson
  • Alba Hykollari
  • Edgar A. Reyes
  • Nohora A. Vega
Original Article

Abstract

The carbohydrate specificities of Dioclea grandiflora lectins DGL-I1 and DGL-II, and Galactia lindenii lectin II (GLL-II) were explored by use of remodeled glycoproteins as well as by the lectin hemagglutinating activity against erythrocytes from various species with different glycomic profiles. The three lectins exhibited differences in glycan binding specificity but also showed overlapping recognition of some glycotopes (i.e. Tα glycotope for the three lectins; IIβ glycotope for DGL-II and GLL-II lectins); in many cases the interaction with distinct glycotopes was influenced by the structural context, i.e., by the neighbouring sugar residues. Our data complement and expand the existing knowledge about the binding specificity of these three Diocleae lectins, and taken together with results of previous studies, allow us to suggest a functional map of the carbohydrate recognition which illustrate the impact of modification of basic glycotopes enhancing, permiting, or inhibiting their recognition by each lectin.

Keywords

Diocleae Dioclea grandiflora Galactia lindenii Lectin specifity Remodeled glycoproteins Hemagglutination 

Notes

Acknowledgments

We thank Dr. R.A. Moreira (University of Fortaleza, Brazil) for his kind gift of D. grandiflora seeds; Dr.J.L. Fernández (Instituto de Ciencias Naturales, Universidad Nacional de Colombia) for species identification and Dr. Wilson’s staff at the Universität für Bodenkultur (BOKU, Vienna, Austria) for training and collaboration. Financial support was provided by the Chemistry Department at the Universidad Nacional - Bogotá, Colombia and COLCIENCIAS with project Lamiaceae Lectin Structure (Grant 110148925106). COLCIENCIAS doctoral student grant (Grant 617 – 0656) facilitated the internship of T.M.Cortázar at the BOKU.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10719_2018_9812_Fig4_ESM.gif (120 kb)
Figure S1

Enzymatic remodeling of transferrin and fetuin in vitro. The structures of the fetuin native glycans (F5) are based on Refs. [49, 50, 51]. Structures in the remodeled forms of asialoagalactofetuin (F2) and asialofetuin (F3 and F4) result from various combinations of sialidase and galactosidase treatments. F3 was also treated with PNGaseF and, therefore, have no N-glycans. To prepare the transferrin neoglycoforms, the native protein was desialylated and then degalactosylated prior to further modification with recombinant glycosyltransferases as indicate. Symbolic nomenclature is that proposed by the Consortium for Functional Glycomics: circles, hexoses; squares, N-acetylhexosamines; white, galactose stereochemistry; black, glucose stereochemistry; gray, mannose stereochemistry; gray triangle, fucose; black diamond, neuraminic acid. Figures modified from Ref. [16] (GIF 120 kb)

10719_2018_9812_MOESM1_ESM.tif (315 kb)
High Resolution Image (TIFF 314 kb)
10719_2018_9812_MOESM2_ESM.pdf (136 kb)
Supplemental Table S1 (PDF 136 kb)
10719_2018_9812_MOESM3_ESM.pdf (179 kb)
Supplemental Table S2 (PDF 179 kb)
10719_2018_9812_MOESM4_ESM.pdf (139 kb)
Supplemental Table S3 (PDF 139 kb)

References

  1. 1.
    Dan, X., Liu, W., Ng, T.B.: Development and applications of lectins as biological tools in biomedical research. Med. Res. Rev. 36, 221–247 (2016)CrossRefGoogle Scholar
  2. 2.
    André, S., Kaltner, H., Manning, J.C., Murphy, P.V., Gabius, H.J.: Lectins: getting familiar with translators of the sugar code. Molecules. 20, 1788–1823 (2015)CrossRefGoogle Scholar
  3. 3.
    de Queiroz, L.P., Pastore, J.F., Cardoso, D., Snak, C., de C Lima, A.L., Gagnon, E., Vatanparast, M., Holland, A.E., Egan, A.N.: A multilocus phylogenetic analysis reveals the monophyly of a recircumscribed papilionoid legume tribe Diocleae with well-supported generic relationships. Mol. Phylogenet. Evol. 90, 1–19 (2015)CrossRefGoogle Scholar
  4. 4.
    Moreira, R.A., Barros, A.C.H., Stewart, J.C., Pusztai, A.: Isolation and characterization of a lectin from the seeds of Dioclea Grandiflora (Mart.) Planta (Heidelh.) 158, 63–69 (1983)CrossRefGoogle Scholar
  5. 5.
    Melgarejo, L.M., Vega, N., Pérez, G.: Isolation and characterization of novel lectins from Canavalia Ensiformis DC and Dioclea Grandiflora Mart. Ex Benth. seeds. Braz. J. Plant Physiol. 17, 315–324 (2005)CrossRefGoogle Scholar
  6. 6.
    Almanza, M., Vega, N., Pérez, G.: Isolating and characterising a lectin from Galactia Lindenii seeds that recognises blood group H determinants. Arch. Biochem. Biophys. 429, 180–190 (2004)CrossRefGoogle Scholar
  7. 7.
    Burkart, A.E.: El género Galactia (Leguminosae—Phaseoleae) en Sudamérica con especial referencia a la Argentina y países vecinos. Darwin. 16, 663–796 (1971)Google Scholar
  8. 8.
    Dam, T.K., Cavada, B.S., Grangeiro, T.B., Santos, C.F., de Sousa, F.A.M., Oscarson, S., Brewer, C.F.: Diocleinae lectins are a Group of Proteins with conserved binding sites for the Core Trimannoside of asparagine-linked oligosaccharides and differential specificities for complex carbohydrates. J. Biol. Chem. 273, 12082–12088 (1998)CrossRefGoogle Scholar
  9. 9.
    Dam, T.K., Roy, R., Das, S.K., Oscarson, S., Brewer, C.F.: Binding of multivalent carbohydrates to Concanavalin a and Dioclea Grandiflora lectin. J. Biol. Chem. 275, 14223–14230 (2000)CrossRefGoogle Scholar
  10. 10.
    Ramos, M.V., Moreira, R.A., Oliveira, J.T., Cavada, B.S., Rouge, P.: The carbohydrate binding specificity and molecular modelling of Canavalia Maritima and Dioclea Grandiflora lectins. Mem. Inst. Oswaldo Cruz. 91, 761–766 (1996)CrossRefGoogle Scholar
  11. 11.
    Ramos, M.V., Moreira, R.A., Cavada, B.S., de Oliveira, J.T.A., Rouge, P.: Interaction of lectins from the sub-tribe Diocleinae with specific ligands. R. Bras. Fisiol Veg. 8, 193–199 (1996)Google Scholar
  12. 12.
    Gupta, D., Oscarson, S., Raju, T.S., Stanley, P., Toone, E.J., Brewer, C.F.: A comparison of the fine saccharide-binding specificity of Dioclea Grandiflora lectin and Concanavalin a. Eur. J. Biochem. 242, 320–326 (1996)CrossRefGoogle Scholar
  13. 13.
    Rozwarski, D.A., Swami, B.M., Brewer, C.F., Sacchettini, J.C.: Crystal structure of the lectin from Dioclea Grandiflora complexed with core trimannoside of asparagine-linked carbohydrates. J. Biol. Chem. 273, 32818–32825 (1998)CrossRefGoogle Scholar
  14. 14.
    Richardson, M., Campos, F.D., Moreira, R.A., Ainouz, I.L., Begbie, R., Watt, W.B., Pusztai, A.: The complete amino acid sequence of the major alpha subunit of the lectin from the seeds of Dioclea Grandiflora (Mart). Eur. J. Biochem. 144, 101–111 (1984)CrossRefGoogle Scholar
  15. 15.
    Ainouz, I.L., Moreira, R.A., Campos, F.D.A.P., Richardson, M., Begbie, R., Stewart, J.C., Watt, W.B., Pusztai, A.: The isolation and amino acid sequence of the β- and γ-subunits of the lectin from the seeds of Dioclea Grandiflora. Phytochemistry. 26, 1435–1440 (1987)CrossRefGoogle Scholar
  16. 16.
    Iskratsch, T., Braun, A., Paschinger, K., Wilson, I.B.H.: Specificity analysis of lectins and antibodies using remodeled glycoproteins. Anal. Biochem. 386, 133–146 (2009)CrossRefGoogle Scholar
  17. 17.
    Hermanson, G.T., Mallia, A.K., Smith, P.: Activation Methods. In: Immobilized Affinity Ligand Techniques, pp. 88–91. Academic Press, San Diego (1992)Google Scholar
  18. 18.
    Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C.: Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85 (1985)CrossRefGoogle Scholar
  19. 19.
    Schägger, H., von Jagow, G.: Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379 (1987)CrossRefGoogle Scholar
  20. 20.
    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685 (1970)CrossRefGoogle Scholar
  21. 21.
    Wu, A.M., Duk, M., Lin, M., Broadberry, R.E., Lisowska, E.: Identification of variant glycophorins of human red cells by lectinoblotting: application to the mi.III variant that is relatively frequent in the Taiwanese population. Transfusion. 35, 571–576 (1995)CrossRefGoogle Scholar
  22. 22.
    Iglesias, J.L., Lis, H., Sharon, N.: Purification and properties of a D-galactose/N-acetyl-D-galactosamine-specific lectin from Erythrina Cristagalli. Eur. J. Biochem. 123, 247–252 (1982)CrossRefGoogle Scholar
  23. 23.
    Hirohashi, S., Clausen, H., Yamada, T., Shimosato, Y., Hakomori, S.I.: Blood group a cross-reacting glycotope defined by monoclonal antibodies NCC Lu-35 and 81 expressed in cancer of blood group O or B individuals. Its identification as Tn antigen. Proc. Natl. Acad. Sci. 82, 7039–7043 (1985)CrossRefGoogle Scholar
  24. 24.
    Vega, N., Pérez, G.: Isolation and characterisation of a Salvia Bogotensis seed lectin specific for the Tn antigen. Phytochemistry. 67, 347–355 (2006)CrossRefGoogle Scholar
  25. 25.
    Sumner, J.B., Howell, S.F.: The identification of the hemagglutinin of the jack bean with Concanavalin a. J. Bacteriol. 32, 227–237 (1936)PubMedPubMedCentralGoogle Scholar
  26. 26.
    Moreira, R.A., Cavada, B.S.: Lectin from Canavalia Brasiliensis (Mart.). Isolation, characterization and behavior during germination. Biol. Plantarum. 26, 113–120 (1984)CrossRefGoogle Scholar
  27. 27.
    Oliveira, J.T.A., Cavada, B.S., Moreira, R.A.: Isolation and partial characterization of a lectin from Cratylia floribunda Mart. Seeds. Rev. Bras. Botânica. 14, 63–68 (1991)Google Scholar
  28. 28.
    Vasconcelos, I.M., Cavada, B.S., Moreira, R.A., Oliveira, J.T.A.: Purification and partial characterization of a lectin from the seeds of Dioclea Guianensis. J. Food Biochem. 15, 137–154 (1991)CrossRefGoogle Scholar
  29. 29.
    Pérez, G., Perez, C., Cavada, B.S., Moreira, R.A., Richardson, M.: Comparison of the amino acid sequences of the lectins from seeds of Dioclea Lehmanni and Canavalia Maritima. Phytochemistry. 30, 1619–1621 (1991)Google Scholar
  30. 30.
    Moreira, R.A., Cordeiro, E.F., Ramos, M.V., Grangeiro, T.B., Martins, J.L., Oliveira, J.T.A., Cavada, B.S.: Isolation and partial characterization of a lectin from seeds of Dioclea Violacea. Braz. J. Plant Physiol. 8, 23–29 (1996)Google Scholar
  31. 31.
    Moreira, R.A., Monteiro, A.C.O., Horta, A.C.G., Oliveira, J.T.A., Cavada, B.S.: Isolation and characterization of Dioclea Altissima Var. Megacarpa seed lectin. Phytochemistry. 46, 139–144 (1997)CrossRefGoogle Scholar
  32. 32.
    Correia, J.L., do Nascimento, A.S., Cajazeiras, J.B., Gondim, A.C., Pereira, R.I., de Sousa, B.L., Coelho de Silva, A.L., Garcia, W., Teixeira, E.H., do Nascimento, K.S., da Rocha, B.A., Nagano, C.S., Sampaio, A.H., Cavada, B.S.: Molecular characterization and tandem mass spectrometry of the lectin extracted from the seeds of Dioclea Sclerocarpa. Molecules. 16, 9077–9089 (2011)CrossRefGoogle Scholar
  33. 33.
    do Nascimento, A.S., Gondim, A.C., Cajazeiras, J.B., Correia, J.L., Pires Ade, F., do Nascimento, K.S., da Silva, A.L., Nagano, C.S., Assreuy, A.M., Cavada, B.S.: Purification and partial characterization of a novel lectin from Dioclea Lasiocarpa Mart seeds with vasodilator effects. J. Mol. Recognit. 25, 657–664 (2012)CrossRefGoogle Scholar
  34. 34.
    Pinto-Júnior, V.R., de Santiago, M.Q., Osterne, V.J., Correia, J.L., Pereira-Júnior, F.N., Cajazeiras, J.B., de Vasconcelos, M.A., Teixeira, E.H., do Nascimento, A.S., Miguel, T.B., Miguel Ede, C., Sampaio, A.H., do Nascimento, K.S., Nagano, C.S., Cavada, B.S.: Purification, partial characterization and immobilization of a mannose-specific lectin from seeds of Dioclea Lasiophylla. Molecules. 18, 10857–10869 (2013)CrossRefGoogle Scholar
  35. 35.
    Pinto-Junior, V.R., Correia, J.L., Pereira, R.I., Pereira-Junior, F.N., Santiago, M.Q., Osterne, V.J., Madeira, J.C., Cajazeiras, J.B., Nagano, C.S., Delatorre, P., Assreuy, A.M., do Nascimento, K.S., Cavada, B.S.: Purification and molecular characterization of a novel mannose-specific lectin from Dioclea Reflexa seeds with inflammatory activity. J. Mol. Recognit. 29, 134–142 (2016)CrossRefGoogle Scholar
  36. 36.
    Cavada, B.S., Grangeiro, T.B., Ramos, M.V., Cordeiro, E.F., Oliveira, J.T.A., Moreira, R.A.: Isolation and partial characterization of a lectin from Dioclea Rostrata Benth seeds. R. Bras. Fisiol Veg. 8, 31–36 (1996)Google Scholar
  37. 37.
    Pérez, G., Hernandez, M., Mora, E.: Isolation and characterization of a lectin from the seeds of Dioclea Lehmanni. Phytochemistry. 29, 1745–1719 (1990)CrossRefGoogle Scholar
  38. 38.
    Pérez, G.: Isolation and characterization of a novel lectin from Dioclea Lehmanni (Fabaceae) seeds. Int. J. Biochem. Cell Biol. 30, 843–853 (1998)CrossRefGoogle Scholar
  39. 39.
    Sierra, A.Y., Pérez, G.: Extracción, purificación y caracterización de dos lectinas en semillas de Dioclea sericea. Rev. Acad. Colomb. Cienc. 23, 445–454 (1999)Google Scholar
  40. 40.
    Cavada, B.S., Ramos, M.V., Cordeiro, E.F., Grangeiro, T.B., Oliveira, J.T.A.: Urano de Carvalho. A.F.F., Moreira, R.A.: purification and partial characterization of a lectin from Dioclea Virgata Benth seeds. R. Bras. Fisiol Veg. 8, 37–42 (1996)Google Scholar
  41. 41.
    Rangel, T.B., Assreuy, A.M., Pires, A.F., Carvalho, A.U., Benevides, R.G., Simões, R.C., Silva, H.C., Bezerra, M.J., Nascimento, A.S., do Nascimento, K.S., Nagano, C.S., Sampaio, A.H., Delatorre, P., Rocha, B.A., Fernandes, P.M., Cavada, B.S.: Crystallization and characterization of an inflammatory lectin purified from the seeds of Dioclea Wilsonii. Molecules. 16, 5087–5103 (2011)CrossRefGoogle Scholar
  42. 42.
    Carrington, D.M., Auffret, A., Hanke, D.E.: Polypeptide ligation occurs during post- translational modification of concanavalin a. Nature. 313, 64–67 (1985)CrossRefGoogle Scholar
  43. 43.
    Satomi, Y., Shimonishi, Y., Takao, T.: N-glycosylation at Asn491 in the Asn-Xaa-Cys motif of human transferrin. FEBS Lett. 576, 51–56 (2004)CrossRefGoogle Scholar
  44. 44.
    Spiro, R.G., Bhoyroo, V.D.: Structure of the O-glycosidically linked carbohydrateunits of fetuin. J. Biol. Chem. 249, 5704–5717 (1974)PubMedGoogle Scholar
  45. 45.
    Green, E.D., Adelt, G., Baenziger, J.U., Wilson, S., Van Halbeek, H.: The asparagines linked oligosaccharides on bovine fetuin: structural analysis of N –glycanase released oligosaccharides by 500-megahertz 1H NMR spectroscopy. J. Biol. Chem. 263, 18253–18268 (1988)PubMedGoogle Scholar
  46. 46.
    Ravn, V., Dabelsteen, E.: Tissue distribution of histo-blood group antigens. APMIS. 108, 1–28 (2000)CrossRefGoogle Scholar
  47. 47.
    Evans, S.V., MacKenzie, C.R.: Characterization of protein–glycolipid recognition at the membrane bilayer. J. Mol. Recognit. 12, 155–168 (1999)CrossRefGoogle Scholar
  48. 48.
    Himbert, S., Alsop, R.J., Rose, M., Hertz, L., Dhaliwal, A., Moran-Mirabal, J.M., Verschoor, C.P., Bowdish, D.M., Kaestner, L., Wagner, C., Rheinstädter, M.C.: The molecular structure of human red blood cell membranes from highly oriented. Solid Supported Multi-Lamellar Membranes. Sci. Rep. 7, 39661 (2017).  https://doi.org/10.1038/srep39661 CrossRefPubMedGoogle Scholar
  49. 49.
    Anstee, D.J.: Blood group-active surface molecules of the human red blood cell. Vox Sang. 58, 1–20 (1990)CrossRefGoogle Scholar
  50. 50.
    Cao, Y., Merling, A., Karsten, U., Goletz, S., Punzel, M., Kraft, R., Butschak, G., Schwartz-Albiez, R.: Expression of CD175 (Tn), CD175s (sialosyl-Tn) and CD176 (Thomsen-Friedenreich antigen) on malignant human hematopoietic cells. Int. J. Cancer. 123, 89–99 (2008)CrossRefGoogle Scholar
  51. 51.
    Podbielska, M., Fredriksson, S.A., Nilsson, B., Lisowska, E., Krotkiewski, H.: ABH blood group antigens in O-glycans of human glycophorin a. Arch. Biochem. Biophys. 429, 145–153 (2004)CrossRefGoogle Scholar
  52. 52.
    Koizumi, T., Matsumoto-Takasaki, A., Nakada, H., Nakata, M., Fujita-Yamaguchi, Y.: Preparation of asialo-agalacto-glycophorin a for screening of anti-Tn antibodies. Bio Sci Trends. 4, 308–311 (2010)Google Scholar
  53. 53.
    Ogawa, H., Galili, U.: Profiling terminal N-acetyllactosamines of glycans on mammalian cells by an immuno-enzymatic assay. Glycoconj. J. 23, 663–674 (2006)CrossRefGoogle Scholar
  54. 54.
    Doucet, J., Gao, Z.H., MacLaren, L.A., McAlister, V.C.: Modification of xenoantigens on porcine erythrocytes for xenotransfusion. Surgery. 135, 178–186 (2004)CrossRefGoogle Scholar
  55. 55.
    Tan, Y., Gong, F., Li, S., Ji, S., Lu, Y., Gao, H., Xu, H., Zhang, Y.: A new profile of terminal N-acetyllactosamines glycans on pig red blood cells and different expression of alpha-galactose on sika deer red blood cells and nucleated cells. Glycoconj. J. 27, 427–433 (2010)CrossRefGoogle Scholar
  56. 56.
    Momoi, M., Yamakawa, T.: Glucosamine containing Sphingoglycolipids from sheep erythrocytes. J. Biochem. 84, 317–325 (1978)CrossRefGoogle Scholar
  57. 57.
    Ito, T., Suzuki, Y., Mitnaul, L., Vines, A., Kida, H., Kawaoka, Y.: Receptor specificity of influenza a viruses correlates with the agglutination of erythrocytes from different animal species. Virol. 227, 493–499 (1997)CrossRefGoogle Scholar
  58. 58.
    Dam, T.K., Gerken, T.A., Cavada, B.S., Nascimento, K.S., Moura, T.R., Brewer, C.F.: Binding studies of α-GalNAc-specific lectins to the α-GalNAc (Tn-antigen) form of porcine submaxillary mucin and its smaller fragments. J. Biol. Chem. 282, 28256–28263 (2007)CrossRefGoogle Scholar
  59. 59.
    Wu, A.M., Liu, J.H., Gong, Y.P., Li, C.C., Chang, E.T.: Multiple recognition systems adopting four different glycotopes at the same domain for the Agaricus bisporus agglutinin-glycan interactions. FEBS Lett. 584, 3561–3566 (2010)CrossRefGoogle Scholar
  60. 60.
    Piller, V., Piller, F., Cartron, J.P.: Comparison of the carbohydrate-binding specificities of seven N-acetyl-D-galactosamine-recognizing lectins. Eur. J. Biochem. 191, 461–466 (1990)CrossRefGoogle Scholar
  61. 61.
    Leppänen, A., Stowell, S., Blixt, O., Cummings, R.D.: Dimeric galectin-1 binds with high affinity to alpha2,3-sialylated and non-sialylated terminal N-acetyllactosamine units on surface-bound extended glycans. J. Biol. Chem. 280, 5549–5562 (2005)CrossRefGoogle Scholar
  62. 62.
    Yamamoto, M., Cid, E., Yamamoto, F.: Crosstalk between ABO and Forssman (FORS) blood group systems: FORS1 antigen synthesis by ABO gene-encoded glycosyltransferases. Sci. Rep. 7, 41632 (2017).  https://doi.org/10.1038/srep41632 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ahmad, N., Gabius, H.J., Kaltner, H., André, S., Kuwabara, I., Liu, F.T., Oscarson, S., Norberg, T., Brewer, C.F.: Thermodynamic binding studies of cell surface carbohydrate glycotopes to galectins-1, −3, and −7: evidence for differential binding specificities. Can. J. Chem. 80, 1096–1104 (2002)CrossRefGoogle Scholar
  64. 64.
    Suzuki, Y., Suzuki, N., Michi, H., Matsumoto, M.: Characterization of gangliosides of porcine erythrocyte membranes: occurrence of ganglioside GD3 as major ganglioside. Lipids. 20, 588–593 (1985)CrossRefGoogle Scholar
  65. 65.
    Thorpe, S., Feizi, T.: Species differences in the expression of carbohydrate differentiation antigens on mammalian blood cells revealed by immunofluorescence with monoclonal antibodies. Biosci. Rep. 4, 673–685 (1984)CrossRefGoogle Scholar
  66. 66.
    Schauer, R., Kamerling, J.P.: Chemistry, Biochemistry and Biology of Sialic Acids. In: New Comprehensive Biochemistry, Glycoproteins II, pp. 243–372. Elsevier, New York (1997)Google Scholar
  67. 67.
    Haseley, S.R., Talaga, P., Kamerling, J.P., Vliegenthart, J.F.G.: Characterization of the carbohydrate binding specificity and kinetic parameters of lectins by using surface plasmon resonance. Anal. Biochem. 274, 203–210 (1999)CrossRefGoogle Scholar
  68. 68.
    Varki, A., Gagneux, P.: Multifarious roles of sialic acids in immunity. Ann. N. Y. Acad. Sci. 1253, 16–36 (2012)CrossRefGoogle Scholar
  69. 69.
    Zou, Z., Chastain, A., Moir, S., Ford, J., Trandem, K., Martinelli, E., Cicala, C., Crocker, P., Arthos, J., Sun, P.D.: Siglecs facilitate HIV-1 infection of macrophages through adhesion with viral sialic acids. PLoS One. 6(9), e24559 (2011).  https://doi.org/10.1371/journal.pone.0024559 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rogers, G.N., Herrler, G., Paulson, J.C., Klenk, H.D.: Influenza C virus uses 9-0-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. J. Biol. Chem. 261, 5947–5951 (1986)PubMedGoogle Scholar
  71. 71.
    Rapoport, E.M., Kurmyshkina, O.V., Bovin, N.V.: Mammalian galectins: structure, carbohydrate specificity, and functions. Biochem. Mosc. 73, 393–405 (2008)CrossRefGoogle Scholar
  72. 72.
    Wilson, I.B.H.: Glycosylation of proteins in plants and invertebrates. Curr. Opin. Struct. Biol. 12, 569–577 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tania M. Cortázar
    • 1
  • Iain B. H. Wilson
    • 2
  • Alba Hykollari
    • 2
  • Edgar A. Reyes
    • 1
  • Nohora A. Vega
    • 1
  1. 1.Protein Research Group, Department of ChemistryUniversidad NacionalBogotáColombia
  2. 2.Molecular Glycobiology Research Group, Department für ChemieUniversität für Bodenkultur (BOKU)WienAustria

Personalised recommendations