Advertisement

Glycoconjugate Journal

, Volume 34, Issue 4, pp 563–574 | Cite as

Probing the catalytic site of rabbit muscle glycogen phosphorylase using a series of specifically modified maltohexaose derivatives

  • Makoto Nakamura
  • Yasushi MakinoEmail author
  • Chika Takagi
  • Tohru Yamagaki
  • Masaaki Sato
Original Article

Abstract

Glycogen phosphorylase (GP) is an allosteric enzyme whose catalytic site comprises six subsites (SG1, SG−1, SG−2, SG−3, SG−4, and SP) that are complementary to tandem five glucose residues and one inorganic phosphate molecule, respectively. In the catalysis of GP, the nonreducing-end glucose (Glc) of the maltooligosaccharide substrate binds to SG1 and is then phosphorolyzed to yield glucose 1-phosphate. In this study, we probed the catalytic site of rabbit muscle GP using pyridylaminated-maltohexaose (Glcα1–4Glcα1–4Glcα1–4Glcα1–4Glcα1–4GlcPA, where GlcPA = 1-deoxy-1-[(2-pyridyl)amino]-D-glucitol]; abbreviated as PA-0) and a series of specifically modified PA-0 derivatives (Glc m -AltNAc-Glc n -GlcPA, where m + n = 4 and AltNAc is 3-acetoamido-3-deoxy-D-altrose). PA-0 served as an efficient substrate for GP, whereas the other PA-0 derivatives were not as good as the PA-0, indicating that substrate recognition by all the SG1 SG−4 subsites was important for the catalysis of GP. By comparing the initial reaction rate toward the PA-0 derivatives (V derivative) with that toward PA-0 (V PA-0), we found that the value of V derivative/V PA-0 decreased significantly as the level of allosteric activation of GP increased. These results suggest that some conformational changes have taken place in the maltooligosaccharide-binding region of the GP catalytic site during allosteric regulation.

Keywords

Glycogen Glycogen phosphorylase Modified maltooligosaccharide Pyridylamination Substrate recognition 

Abbreviations

AltNAc

3-acetoamido-3-deoxy-D-altrose

CD

Cyclodextrin

CP-91149

[R-(R*,S*)]-5-chloro-N-[3-(dimethylamino)-2-hydroxy-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-carboxamide

DHB

2,5-dihydroxybenzoic acid

GDE

Glycogen debranching enzyme

Glc

D-glucose

Glc-1-P

α-D-glucose 1-phosphate

GlcPA

1-deoxy-1-[(2-pyridyl)amino]-D-glucitol

GP

Glycogen phosphorylase

HPLC

High-performance liquid chromatography

MALDI-TOF MS

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

MW

Molecular weight

α-NH2-CD

3A-amino-3A-deoxy-(2AS,3AS)-α-cyclodextrin

PA

Pyridylamino

Pi

Inorganic phosphate

Notes

Compliance with ethical standards

Conflict of interest

Authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Sillerud, L.O., Shulman, R.G.: Structure and metabolism of mammalian liver glycogen monitored by carbon-13 nuclear magnetic resonance. Biochemistry. 22, 1087–1094 (1983)CrossRefPubMedGoogle Scholar
  2. 2.
    Matsui, M., Kakuta, M., Misaki, A.: Comparison of the unit-chain distributions of glycogens from different biological sources, revealed by anion exchange chromatography. Biosci Biotechnol Biochem. 57, 623–627 (1993)CrossRefGoogle Scholar
  3. 3.
    Roach, P.J., Depaoli-Roach, A.J., Hurley, T.D., Tagliabracci, V.S.: Glycogen and its metabolism: some new developments and old themes. Biochem J. 441, 763–787 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Titani, K., Koide, A., Hermann, J., Ericsson, L.H., Kumar, S., Wade, R.D., Walsh, K.A., Neurath, H., Fisher, E.H.: Complete amino acid sequence of rabbit muscle glycogen phosphorylase. Proc Natl Acad Sci U S A. 74, 4762–4766 (1977)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tagaya, M., Fukui, T.: Catalytic reaction of glycogen phosphorylase reconstituted with a coenzyme-substrate conjugate. J Biol Chem. 259, 4860–4865 (1984)PubMedGoogle Scholar
  6. 6.
    Gordon, R.B., Brown, D.H., Brown, B.I.: Preparation and properties of the glycogen-debranching enzyme from rabbit liver. Biochim Biophys Acta. 289, 97–107 (1972)CrossRefPubMedGoogle Scholar
  7. 7.
    Nakayama, A., Yamamoto, K., Tabata, S.: Identification of the catalytic residues of bifunctional glycogen debranching enzyme. J Biol Chem. 276, 28824–28828 (2001)CrossRefPubMedGoogle Scholar
  8. 8.
    Sato, S., Ohi, T., Nishino, I., Sugie, H.: Confirmation of the efficiency of vitamin B6 supplementation for McArdle disease by follow-up muscle biopsy. Muscle Nerve. 45, 436–440 (2012)CrossRefPubMedGoogle Scholar
  9. 9.
    Voet, D., Voet, J.D.: Biochemistry (third edition) pp. 626–656. John Wiley & sons Inc. Hoboken. (2004)Google Scholar
  10. 10.
    Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry (sixth edition) pp. 592–616. W. H. Freeman and company. N Y. (2007)Google Scholar
  11. 11.
    Miyagawa, D., Makino, Y., Sato, M.: Sensitive, nonradioactive assay of phosphorylase kinase through measurement of enhanced phosphorylase activity towards fluorogenic dextrin. J Biochem. 159, 239–246 (2016)CrossRefPubMedGoogle Scholar
  12. 12.
    Madsen, N.B., Shechosky, S., Fletterick, R.J.: Site-site interactions in glycogen phosphorylase b probed by ligands specific for each site. Biochemistry. 22, 4460–4465 (1983)CrossRefPubMedGoogle Scholar
  13. 13.
    Lowry, O.H., Schult, D.W., Passonneau, J.V.: Effects of adenylic acid on the kinetics of muscle phosphorylase a. J Biol Chem. 239, 1947–1953 (1964)PubMedGoogle Scholar
  14. 14.
    Rush, J.W.E., Spriet, L.L.: Skeletal muscle glycogen phosphorylase a kinetics: effects of adenine nucleotides and caffeine. J Appl Physiol. 91, 2071–2078 (2001)PubMedGoogle Scholar
  15. 15.
    Tanabe, S., Kobayashi, M., Matsuda, K.: Yeast glycogen phosphorylase: kinetic properties compared with muscle and potato enzymes. Agric Biol Chem. 52, 757–764 (1988)Google Scholar
  16. 16.
    Kasvinsky, P.J., Madsen, N.B., Fletterick, R.J., Sygusch, J.: X-ray crystallographic and kinetic studies of oligosaccharide binding to phosphorylase. J Biol Chem. 253, 1290–1296 (1978)PubMedGoogle Scholar
  17. 17.
    Sprang, S.R., Goldsmith, E.J., Fletterick, R.J., Withers, S.G., Madsen, N.B.: Catalytic site of glycogen phosphorylase: structure of the T state and specificity for α-D-glucose. Biochemistry. 21, 5364–5371 (1982)CrossRefPubMedGoogle Scholar
  18. 18.
    Withers, S.G., Madsen, N.B., Sprang, S.R., Fletterick, R.J.: Catalytic site of glycogen phosphorylase: structural changes during activation and mechanistic implications. Biochemistry. 21, 5372–5382 (1982)CrossRefPubMedGoogle Scholar
  19. 19.
    Hiromi, K.: Interpretation of dependency of rate parameters on the degree of polymerization of substrate in enzyme-catalyzed reactions. Evaluation of subsite affinities of exo-enzyme. Biochem Biophys Res Commun. 40, 1–6 (1970)CrossRefPubMedGoogle Scholar
  20. 20.
    Hiromi, K., Nitta, Y., Numata, C., Ono, S.: Subsite affinities of glucoamylase: examination of the validity of the subsite theory. Biochim Biophys Acta. 302, 362–375 (1973)CrossRefPubMedGoogle Scholar
  21. 21.
    Nitta, Y., Mizushima, M., Hiromi, K., Ono, S.: Influence of molecular structures of substrates and analogues on taka-amylase a catalyzed hydrolyses. I Effect of chain length of linear substrates J Biochem. 69, 567–576 (1971)PubMedGoogle Scholar
  22. 22.
    Konishi, Y., Kitazato, S., Nakatani, N.: Partial purification and characterization of acid and neutral α-glucosidases from preclimacteric banana pulp tissues. Biosci Biotechnol Biochem. 56, 2046–2051 (1992)CrossRefGoogle Scholar
  23. 23.
    Fujita, K., Tahara, T., Koga, T., Imoto, T.: Enzymatic synthesis of specifically modified linear oligosaccharides from γ-cyclodextrin derivatives. Study on importance of acive sites of Taka amylase A. Bull Chem Soc Jpn. 62, 3150–5154 (1989)Google Scholar
  24. 24.
    Croft, A.P., Bartsch, R.A.: Synthesis of chemically modified cyclodextrins. Tetrahedron. 39, 1417–1474 (1983)CrossRefGoogle Scholar
  25. 25.
    Walker, G.J., Whelan, W.J.: The mechanism of carbohydrase action: 8, structures of the muscle-phosphorylase limit dextrins of glycogen and amylopectin. Biochem J. 76, 264–268 (1960)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hase, S., Ikenaka, T., Matsushima, Y.: Structure analyses of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochem Biophys Res Commun. 85, 257–263 (1978)CrossRefPubMedGoogle Scholar
  27. 27.
    Kuraya, N., Hase, S.: Release of O-linked sugar chains from glycoproteins with anhydrous hydrazine and pyridylamination of the sugar chains with improved reaction conditions. J Biochem. 112, 122–126 (1992)CrossRefPubMedGoogle Scholar
  28. 28.
    Makino, Y., Omichi, K.: Acceptor specificity of 4-α-glucanotransferases of mammalian glycogen debranching enzymes. J Biochem. 139, 535–541 (2006)CrossRefPubMedGoogle Scholar
  29. 29.
    Natsuka, S., Masuda, M., Sumiyoshi, W., Nakakita, S.: Improved method for drawing of a glycan map, and the first page of glycan atlas, which is a compilation of glycan maps for a whole organism. PLoS One. 9, e102219 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Makino, Y., Omichi, K., Hase, S.: Analysis of oligosaccharide structures from the reducing end terminal by combining partial acid hydrolysis and a two-dimensional sugar map. Anal Biochem. 264, 172–179 (1998)CrossRefPubMedGoogle Scholar
  31. 31.
    Day, A.G., Parsonage, D., Ebel, S., Brown, T., Fersht, A.R.: Barnase has subsites that give rise to large rate enhancements. Biochemistry. 31, 6390–6395 (1992)CrossRefPubMedGoogle Scholar
  32. 32.
    Buckle, A.M., Fersht, A.R.: Subsite binding in an RNase: structure of a barnase–tetranucleotide complex at 1.76-Å resolution. Biochemistry. 33, 1644–1653 (1994)CrossRefPubMedGoogle Scholar
  33. 33.
    Burkhardt, G., Wegener, G.: Glycogen phosphorylase from flight muscle of the hawk moth Manduca sexta: purification and properties of three interconvertible forms and the effect of flight on their interconversion. J Comp Physiol B. 164, 261–271 (1994)CrossRefGoogle Scholar
  34. 34.
    Makino, Y., Omichi, K.: Sensitive assay of glycogen phosphorylase activity by analysing the chain-lengthening action on a fluorogenic maltooligosaccharide derivative. J Biochem. 146, 71–76 (2009)CrossRefPubMedGoogle Scholar
  35. 35.
    Lineweaver, H., Burk, D.: The determination of enzyme dissociation constants. J Am Chem Soc. 56, 658–666 (1934)CrossRefGoogle Scholar
  36. 36.
    Makino, Y., Fujii, Y., Taniguchi, M.: Properties and functions of the storage sites of glycogen phosphorylase. J Biochem. 157, 451–458 (2015)CrossRefPubMedGoogle Scholar
  37. 37.
    Barford, D., Johnson, L.N.: The allosteric transition of glycogen phosphorylase. Nature. 340, 609–616 (1989)CrossRefPubMedGoogle Scholar
  38. 38.
    Buchbinder, J.L., Rath, V.L., Fletterick, R.J.: Structural relationships among regulated and unregulated phosphorylases. Annu Rev Biophys Biomol Struct. 30, 191–209 (2001)CrossRefPubMedGoogle Scholar
  39. 39.
    Leonidas, D.D., Oikonomakos, N.G., Papageorgiou, A.C., Xenakis, A., Cazianis, C.T., Bem, F.: The ammonium sulfate activation of phosphorylase b. FEBS Lett. 261, 23–27 (1990)CrossRefPubMedGoogle Scholar
  40. 40.
    Ishimizu, T., Hase, S.: Substrate recognition by sugar chain-related enzymes: recognition of a large area of substrates and its strictness and tolerance. Trends Glycosci Glycotechnol. 17, 215–227 (2005)CrossRefGoogle Scholar
  41. 41.
    Okubo, M., Horinishi, A., Takeuchi, M., Suzuki, Y., Sakura, N., Hasegawa, Y., Igarashi, T., Goto, K., Tahara, H., Uchimoto, S., Omichi, K., Kanno, H., Hayasaka, K., Murase, T.: Heterogeneous mutations in the glycogen-debranching enzyme gene are responsible for glycogen storage disease type IIIa in Japan. Hum Genet. 106, 108–115 (2000)CrossRefPubMedGoogle Scholar
  42. 42.
    Zhai, L., Feng, L., Xia, L., Yin, H., Xiang, S.: Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations. Nat Commun. 7, 11229 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Watanabe, Y., Makino, Y., Omichi, K.: Donor substrate specificity of 4-α-glucanotransferase of porcine liver glycogen debranching enzyme and complementary action to glycogen phosphorylase on debranching. J Biochem. 143, 435–440 (2008)CrossRefPubMedGoogle Scholar
  44. 44.
    Somsak, L., Czifrak, K., Toth, M., Bokor, E., Chrysina, E.D., Alexacou, K.M., Hayes, J.M., Tiraidis, C., Lazoura, E., Leonidas, D.D., Zographos, S.E., Oikonomakos, N.: New inhibitors of glycogen phosphorylase as potential antidiabetic agents. Curr Med Chem. 15, 2933–2983 (2008)CrossRefPubMedGoogle Scholar
  45. 45.
    Martin, W.H., Hoover, D.J., Armento, S.J., Stock, I.A., McPherson, R.K., Danley, D.E., Stevenson, R.W., Barrett, E.J., Treadway, J.L.: Discovery of a human liver glycogen phosphorylase inhibitor that lowers blood glucose in vivo. Proc Natl Acad Sci U S A. 95, 1776–1781 (1998)CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lerin, C., Montell, E., Nolasco, T., Garcia-Rocha, M., Guinovart, J.J., Gomez-Foix, A.M.: Regulation of glycogen metabolism in cultured human muscles by the glycogen phosphorylase inhibitor CP-91149. Biochem J. 378, 1073–1077 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Oikonomakos, N.G., Chrysina, E.D., Kosmopoulou, M.N., Leonidas, D.D.: Crystal structure of rabbit muscle glycogen phosphorylase a in a complex with a potential hypoglycaemic drug at 2.0 Å resolution. Biochim Biophys Acta. 1647, 325–332 (2003)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Graduate School of ScienceOsaka Prefecture UniversityOsakaJapan
  2. 2.Bioorganic Research Institute, Suntory Foundation for Life SciencesKyotoJapan

Personalised recommendations