Skip to main content

Advertisement

Log in

Transferase and hydrolytic activities of the laminarinase from rhodothermus marinus and its M133A, M133C, and M133W mutants

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Comparative studies of the transglycosylation and hydrolytic activities have been performed on the Rhodothermus marinus β-1,3-glucanase (laminarinase) and its M133A, M133C, and M133W mutants. The M133C mutant demonstrated near 20% greater rate of transglycosylation activity in comparison with the M133A and M133W mutants that was measured by NMR quantitation of nascent β(1-4) and β(1-6) linkages. To obtain kinetic probes for the wild-type enzyme and Met-133 mutants, p-nitrophenyl β-laminarin oligosaccharides of degree of polymerisation 2–8 were synthesized enzymatically. Catalytic efficiency values, k cat/K m, of the laminarinase catalysed hydrolysis of these oligosaccharides suggested possibility of four negative and at least three positive binding subsites in the active site. Comparison of action patterns of the wild-type and M133C mutant in the hydrolysis of the p-nitrophenyl-β-D-oligosac- charides indicated that the increased transglycosylation activity of the M133C mutant did not result from altered subsite affinities. The stereospecificity of the transglycosylation reaction also was unchanged in all mutants; the major transglycosylation products in hydrolysis of p-nitrophenyl laminaribioside were β-glucopyranosyl-β-1,3-D-glucopy- ranosyl-β-1,3-D-glucopyranose and β-glucopyranosyl-β-1, 3-D-glucopyranosyl-β-1,3-D-glucpyranosyl-β-1,3-D- glucopyranoxside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henrissat, B.: A classification of glycosyl hydrolases based on amino acid sequence similarities, Biochem. J. 280, 309–16 (1991)

    PubMed  CAS  Google Scholar 

  2. Michel, C., Chantalat, L., Duee, E., Barbeyron, T., Henrissat, B., Kloareg, B., Dideberg, O.: The κ-carrageenanase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of clan B glycoside hydrolases. Structure 9, 513–25 (2001)

    Article  PubMed  CAS  Google Scholar 

  3. Planas, A.: Bacterial 1,3-1,4-β-glucanases: structure, function and protein engineering. Biochim. Biophys. Acta 1543, 361–82 (2000)

    PubMed  CAS  Google Scholar 

  4. Allouch, J., Jam, M., Helbert, W., Barbeyron, T., Kloareg, B., Henrissat, B., Czjzek, M.: The three-dimensional structures of two β-agarases. J. Biol. Chem. 278, 47171–80 (2003)

    Article  PubMed  CAS  Google Scholar 

  5. Johansson, P., Brumer, H., Baumann, M.J., Kalla, A.M., Henriksson, H., Denman, S.E., Teeri, T.T., Jones, T.A.: Crystal Structures of poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding. Plant. Cell. 16, 874–86 (2004)

    Article  PubMed  CAS  Google Scholar 

  6. Vocadlo, D.J., Davies, G.J., Laine, R., Withers, S.G.: catalysis by hen egg-white lysozyme proceeds via a cavalent intermediate. Nature 412, 835–8 (2001)

    Article  PubMed  CAS  Google Scholar 

  7. Sinnott, M.L., Catalytic mechanisms of enzymatic glycosyl transfer. Chem. Rev. 90, 1171–1202 (1990)

    Google Scholar 

  8. Krah, M., Misselwitz, R., Politz, O., Thomsen, K.K., Welfle, H., Borriss, R.: The laminarinase from thermophilic eubacterium Rhodothermus marinus. Conformation, stability, and identification of active site carboxylic residues by site-directed mutagenesis. Eur. J. Biochem. 257, 101–11 (1998)

    Google Scholar 

  9. Godfrey, T.: On comparison of key characteristics of industrial enzymes by type and source. In: Godfrey, T., Reinchelt, J.(eds.) Industrial Enzymology pp. 466. Macmillan, London (1983)

  10. Jakeman, D., Withers, S.G., Glycosynthases: new tools for oligosaccharide synthesis. Trends Glycosc. Glycotechnol. 14, 13–25 (2002)

    CAS  Google Scholar 

  11. Mackenzie, L.F., Wang, Q., Warren, R.A., Withers, S.G., Glycosynthases: mutant glycosidases for oligosaccharide synthesis. J. Am. Chem. Soc. 120, 5583–4 (1998)

    Article  CAS  Google Scholar 

  12. Mayer, C., Zechel, D.L., Reid, S.R., Warren, A.J., Withers, S.G.: The E358S mutant of Agrobacterium sp. β-glucosidase is a greatly improved glycosynthase. FEBS Let. 466, 40–4 (2000)

    Google Scholar 

  13. Viladot, J.-L., Canals, F., Batllori, X., Planas, A.: Long-lived glycosyl-enzyme intermediate mimic produced by formate re-activation of a mutant endoglucanase lacking its catalytic nucleophile. Biochem. J. 355, 79–86 (2001)

    Article  PubMed  CAS  Google Scholar 

  14. Williams, S.J., Withers, S.: Glycosyl fluorides in enzymatic reactions. Carbohydr. Res. 327, 27–46 (2000)

    Article  PubMed  CAS  Google Scholar 

  15. Rivera, M.H., Lypez-Munguha, A., Soberyn, X., Saab-Rincyn, G.: α-Amylase from Bacillus licheniformis mutants near to the catalytic site: effects on hydrolytic and transglycosylation activity. Protein Engineer 16, 505–14 (2003)

    Article  CAS  Google Scholar 

  16. Matsui, I., Yoneda, S., Ishikawa, K., Miyairi, S., Fukui, S., Umeyama, H., Honda, K.: Roles of the aromatic residues conserved in the active center of Saccharomycopsis α-amylase for transglycosylation and hydrolysis activity. Biochem. 33, 451–8 (1994)

    Article  CAS  Google Scholar 

  17. Hansson, T., Kaper, T., van der Oost, J., de Vos, W.M., Aldercreutz, P.: Improved oligosaccharide synthesis by protein engineering of β-glucosidase CelB from hyperthermophilic Pyrococcus furiosus. Biotechnol. Bioengin. 73, 203–10 (2001)

    Article  CAS  Google Scholar 

  18. Viladot, J.-L., Stone, B., Driguez, H., Planas, A.: Expeditious synthesis of a new hexasaccharide using transglycosylation reaction catalysed by Bacillus (13),(14)-β-D-glucan 4-glucanohydrolase. Carbohydr. Res. 311, 95–9 (1998)

    Article  PubMed  CAS  Google Scholar 

  19. Viladot, J.-L., Moreau, V., Planas, A., Driguez, H.: Transglycosylation activity of Bacillus 1,3-1,4-β-D-glucan 4-glucanohydrolase. Enzymatic studies of alternate 1,3-1,4-β-D-glucooligosaccharides. J. Chem. Soc., Perkin Trans 1, 2383–7 (1997)

    Article  Google Scholar 

  20. Borriss, R., Krah, M., Brumer 3rd, H., Kerzhner, M.A., Elyakova, L.A., Ivanen, D.R., Eneyskaya, E.V., Shishlyannikov, S.M., Shabalin, K.A., Neustroev, K.N.: Enzymatic synthesis of 4-methylumbelliferyl β-(1,3)-D-glucooligosaccharides–new substrates for 1,3(4)-β-glucanase. Carbohydr. Res. 338, 1455–7 (2003)

    Article  PubMed  CAS  Google Scholar 

  21. Kataoka, K., Muta, T., Yamazaki, S., Takeshige, K.: Activation of macrophages by linear (13)-β-D-glucans. Implications for the recognition of fungi by innate immunity. J. Biol. Chem. 277, 36825–31 (2002)

    Article  PubMed  CAS  Google Scholar 

  22. Lowe, E., Rice, P., Ha T, Li C, Kelley, J., Ensley, H., Lopez-Perez, J., Kalbfleisch, J., Lowman, D., Margl, P., Browder, W.D., Williams, A.: (1,3)-β-D-linked heptasaccharide is the unit ligand for glucan pattern recognition receptors on human monocytes. Microbes. Infec. 3, 789–97 (2001)

    Article  CAS  Google Scholar 

  23. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–5 (1970)

    Article  PubMed  CAS  Google Scholar 

  24. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., Randall, R.J.: Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193, 265–75 (1951)

    PubMed  CAS  Google Scholar 

  25. Ogawa, K., Tsurugi, J., Watanabe, T.: The dependence of the conformation of a (1,3)-β-D-glucan on chain-length in alkaline solution. Carbohydr. Res. 29, 397–403 (1973)

    Article  CAS  Google Scholar 

  26. Petersen, B.O., Krah, M., Duus, J.O., Thomsen, K.K.: A transglycosylating 1,3(4)-β-glucanase from Rhodothermus marinus NMR analysis of enzyme reactions. Eur. J. Biochem. 267, 361–9 (2000)

    Article  PubMed  CAS  Google Scholar 

  27. Kulminskaya, A.A., Thomsen, K.K., Shabalin, K.A., Sidorenko, I.A., Eneyskaya, E.V., Savel’ev, A.N., Neustroev, K.N.: Isolation, enzymatic properties, and mode of action of an exo-1,3-β-glucanase from Trichoderma viride. Eur. J. Biochem. 268, 6123–31 (2001)

    Google Scholar 

  28. Somogyi, M.: Notes on sugar determination. J. Biol. Chem. 195, 19–23 (1952)

    Google Scholar 

  29. Eneyskaya, E.V., Brumer 3rd H., Backinowsky, L.V., Ivanen, D.R., Kulminskaya, A.A., Shabalin, K.A., Neustroev, K.N.: Enzymatic synthesis of β-xylanase substrates: Transglycosylation reactions of the β-xylosidase from Aspergillus sp., Carbohydr. Res. 338, 313–25 (2003)

  30. Malet, C., Planas, A.: Mechanism of Bacillus 1,3;1,4-β-D-glucan 4-glucanohydrolases: kinetics and pH studies with 4-methylumbelliferyl β-D-glucan oligosaccharides. Biochem. 36, 13838–48 (1997)

    Article  CAS  Google Scholar 

  31. Fujimoto, H., Isomura, M., Miyazaki, T., Matsuo, I., Walton, R., Sakakibara, T., Ajisaka, K.: Enzymatic syntheses of GlcNAc β-1-2Man and Gal-β-1-4GlcNAc β-1-2Man as components of complex type sugar chains. Glycoconj. J. 14, 75–80 (1997)

    Article  PubMed  CAS  Google Scholar 

  32. Pitson, S.M., Seviour, R.J., McDougall, B.M., Woodward, J.R., Stone, B.A.: Purification and characterization of three extracellular (13)-β-D-glucan glucohydrolases from the filamentous fungus Acremonium persicinum. Biochem. J. 308, 733–41 (1995)

    Google Scholar 

  33. Kraulis, P.J.: MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallog. 24, 946–50 (1991)

    Article  Google Scholar 

  34. Christensen, U., Olsen, K., Stoffer, B.B., Svensson, B.: Substrate binding mechanism of Glu180 − > Gln, Asp176 - > Asn and wild-type glucoamylases from Aspergillus niger. Biochem. 35, 15009–18 (1996)

    Google Scholar 

  35. Christensen, T., Stoffer, B.B., Svensson, B., Christensen, U.: Some details of the reaction mechanism of glucoamylase from Aspergillus niger - Kinetic and structural studies on Trp52 − > Phe and Trp 317 − > Phe mutants. Eur. J. Biochem. 250, 638–45 (1997)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna A. Kulminskaya.

Additional information

In a memoriam of Dr. Kirill N. Neustroev. All we, his friends and colleagues, mourn for his sudden death. He was a bright and talented scientist, brilliant manager and good friend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neustroev, K.N., Golubev, A.M., Sinnott, M.L. et al. Transferase and hydrolytic activities of the laminarinase from rhodothermus marinus and its M133A, M133C, and M133W mutants. Glycoconj J 23, 501–511 (2006). https://doi.org/10.1007/s10719-006-6733-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-006-6733-0

Keywords

Navigation