Advertisement

Femtosecond Laser Modification of Antimony-Containing Lithium-Aluminum-Silicate Glass and Transparent Sitall Obtained from It

  • 16 Accesses

The particulars of the action of a femtosecond laser beam on antimony-containing lithium-aluminum-silicate glass and the close to zero CLTE sitall obtained from this glass by heat-treatment were studied in a wide temperature range. In both the non-thermal and thermal laser action regimes local refractive index reduction is demonstrated in the laser modified regions of the sitall, reaching 0.002 in the non-thermal regime. The main reason for refractive index reduction is, by all appearances, partial amorphization of the crystal phase of β-eucryptite.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1.
Fig. 2.
Fig. 3.

References

  1. 1.

    R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photonics, 2, 219 – 225 (2018).

  2. 2.

    A. Marcinkevièius, S. Juodkazis, A. Watanabe, et al., “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett., 26, 277 – 279 (2001).

  3. 3.

    S. Nolte, M. Will, A. Burghoff, and A. Tuennermann, “Femtosecond waveguide scribing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A, 77, 109 – 111 (2003).

  4. 4.

    M. Beresna, M. Gecevièius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett., 98, 201101 (2011).

  5. 5.

    T. T. Fernandez, M. Sakakura, S. M. Eaton, et al., “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci., 94, 68 – 113 (2018).

  6. 6.

    F. Sima, K. Sugioka, and R. M. Vazquez, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics, 7, 613 – 634 (2018).

  7. 7.

    S. Richter, C. Miese, S. Döring, et al., “Laser induced nanogratings beyond fused silica – periodic nanostructures in borosilicate glasses and ULEtm,” Opt. Mater. Express, 3, 1161 – 1166 (2013).

  8. 8.

    S. Richter, D.Möncke, F. Zimmermann, et al., “Ultrashort pulse induced modification in ULE – from nanograting formation to laser darkening,” Opt. Mater. Express, 5, 1834 – 1850 (2015).

  9. 9.

    I. Efthimiopoulos, D. Palles, S. Richter, et al., “Femtosecond laser-induced transformations in ultra-low expansion glass: Microsctructure and local density variations by vibrational spectroscopy,” J. Appl. Phys., 123, 233105(1 – 16) (2018).

  10. 10.

    V. R. Bhardwaj, E. Simova, P. B. Corkum, and D. M. Rayner, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys., 97, 083102(1 – 9) 2005).

  11. 11.

    V. N. Sigaev, V. I. Savinkov, E. E. Stroganova, et al., “Glass formation and crystallization of lithium-aluminum-silicate glass: Effect of phosphorus, lithium, and barium oxides on the crystallization properties,” Steklo Keram., No. 10, 21 – 24 (2014); V. N. Sigaev, V. I. Savinkov, E. E. Stroganova, et al., “Glass formation and crystallization of lithium-aluminum-silicate glass: Effect of phosphorus, lithium, and barium oxides on the crystallization properties,” Glass Ceram., 71, 356 – 359 (2015).

  12. 12.

    V. N. Sigaev, V. I. Savinkov, E. E. Stroganova, et al., “Glass formation and crystallization of lithium-aluminum-silicate glass: effect of the form of raw materials on the melting and crystallization properties,” Steklo Keram., No. 7, 3 – 7 (2014); V. N. Sigaev, V. I. Savinkov, E. E. Stroganova, et al., “Glass formation and crystallization of lithium-aluminum-silicate glass: effect of the form of raw materials on the melting and crystallization properties,” Glass Ceram., 71, 225 – 228 (2014).

  13. 13.

    E. I. Grishina, V. I. Sigaev, E. E. Stroganova, et al., “Crystallization of lithium-aluminum-silicate glasses with antimony oxide as an additive,” Usp. Khim. Khim. Tekh., 28(8), 35 – 38 (2014).

  14. 14.

    V. N. Sigaev, V. I. Savinkov, E. E. Stroganova, and A. N. Ignatov, A method of Obtaining Optical Sitall, RF Patent No. 2569703 C03C 10/12 [in Russian], publ. April 27, 2009.

  15. 15.

    S. M. Eaton, H. Zhang, P. R. Herman, et al., “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express, 13, 4708 – 4716 (2018).

  16. 16.

    A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett., 30, 2248 – 2250 (2005).

  17. 17.

    M. Kang, L. Sisken, J. Cook, et al., “Refractive index patterning of infrared glass ceramics through laser-induced vitrification,” Opt. Mat. Express, 8(9), 2722 – 2733 (2018).

Download references

This work was supported by the Russian Science Foundation (grant 19-19-00613).

Author information

Correspondence to V. N. Sigaev.

Additional information

Translated from Steklo i Keramika, No. 10, pp. 9 – 13, October, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sigaev, V.N., Lipat’ev, A.S., Fedotov, S.S. et al. Femtosecond Laser Modification of Antimony-Containing Lithium-Aluminum-Silicate Glass and Transparent Sitall Obtained from It. Glass Ceram 76, 370–373 (2020) doi:10.1007/s10717-020-00203-w

Download citation

Key words

  • index of refraction
  • lithium-aluminum-silicate glass
  • laser modification
  • optical sitalls
  • Raman scattering spectroscopy