Advertisement

Glass and Ceramics

, Volume 76, Issue 5–6, pp 167–170 | Cite as

Mechanical Properties of Glass Fiber Reinforced Plastics Modified with Carbon Nanotubes

  • A. N. KrasnovskiiEmail author
  • I. A. Kazakov
  • P. S. Kishchuk
Article
  • 21 Downloads

The results of studies of the physical and mechanical properties of glass fiber reinforced plastics [GFRP] modified by carbon nanotubes are reported. An epoxy binder was chosen as the polymer matrix; the glass fibers were macroscopic filler. Multilayer carbon nanotubes were used as the modifying additive. The mechanical properties of the polymer composites were analyzed as a function of the geometric parameters of the carbon nanotubes.

Key words

glass fiber reinforced plastics [GFRP] epoxy matrix carbon nanotubes mechanical properties modulus of elasticity 

References

  1. 1.
    S. N. Grigoriev, A. N. Krasnovskii, and I. A. Kazakov, “Effect of preliminary heating of the binder on the quality of glass composite pultrusion rods,” Steklo Keram., No. 8, 36 – 40 (2015); S. N. Grigoriev, A. N. Krasnovskii, and I. A. Kazakov, “Effect of preliminary heating of the binder on the quality of glass composite pultrusion rods,” Glass Ceram., 72(7 – 8), 299 – 302 (2015); DOI: 10.1007_s10717-015-9778-3.Google Scholar
  2. 2.
    I. A. Kazakov and A. N. Krasnovskii, “Effect of functionalized multiwalled carbon nanotubes on the feasibility of fabrication of composite glass fiber reinforced plastic rebars,” Zh. Prikl. Khim., 89(8), 1062 – 1070 (2016); I. A. Kazakov and A. N. Krasnovskii, “Effect of functionalized multiwalled carbon nanotubes on the feasibility of fabrication of composite glass fiber reinforced plastic rebars,” Russian J. Appl. Chem., 89(8), 1309 – 1316 (2016).CrossRefGoogle Scholar
  3. 3.
    I. A. Kazakov, A. N. Krasnovskii, and A. G. Kuznetsov, “The use of optimization algorithm for assessing effects of Carboxyl functionalized MWCNTs on the productivity of nidltrusion process,” J. Nanostruct., 7(2), 89 – 96 (2017); DOI: 10.22052_jns.2017.02.001.Google Scholar
  4. 4.
    A. N. Krasnovskii, P. S. Kishchuk, and T. M. Mukhin, “Study of the quality of carbon nanotubes produced by chemical vapor deposition,” Zh. Prikl Khim., 90(5), 1230 – 1233 (2017); A. N. Krasnovskii, P. S. Kishchuk, and T. M. Mukhin, “Study of the quality of carbon nanotubes produced by chemical vapor deposition,” Russian J. Appl. Chem., 90(9), 1484 – 1487 (2017); DOI: 10.1134_S1070427217090178.Google Scholar
  5. 5.
    N. Stepanishchev, “Nanocomposites: Problems of filling,” Plastiks, No. 4 (86), 23 – 27 (2010).Google Scholar
  6. 6.
    V. A. Tarasov and N. A. Stepanishchev, “Application of nanotechnologies for hardening the polyester matrix,” Vest. MGTU Im. N. E. Baumana, Ser. Mashinostroenie, Spec. issue, 207 – 216 (2010).Google Scholar
  7. 7.
    J. C. Halpin and J. L. Kardos, “The Halpin–Tsai equations: a review,” Polym. Eng. Sci., 16(5), 344 – 352 (1976).CrossRefGoogle Scholar
  8. 8.
    J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, “Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites,” Carbon, 44, 1624 – 1652 (2006).CrossRefGoogle Scholar
  9. 9.
    C. A. Cooper, S. R. Cohen, A. H. Barber, and H. D. Wagner, “Detachment of nanotubes from a polymer matrix,” Appl. Phys. Lett., 81, 3873 – 3875 (2002).CrossRefGoogle Scholar
  10. 10.
    Kenan Song, Yiying Zhang, Jiangsha Meng, et al., “Structural polymer-based carbon nanotube composite fibers: Understanding the processing–structure–performance relationship,” Materials, 6(6), 2543 – 2577 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. N. Krasnovskii
    • 1
    Email author
  • I. A. Kazakov
    • 1
  • P. S. Kishchuk
    • 1
  1. 1.Moscow State Technological University (MSTU STANKIN)MoscowRussia

Personalised recommendations