Glass and Ceramics

, Volume 76, Issue 3–4, pp 94–98 | Cite as

Effect of Aluminum Oxide Powder Particle Size on Spark Plasma Sintering Results

  • N. A. RubinkovskiiEmail author
  • D. P. Shornikov
  • A. V. Tenishev
  • A. G. Zaluzhnyi
  • A. G. Zholnin

The results of a comparative study of compacts obtained by spark plasma sintering from nano- and ultradisperse (UD) aluminum oxide powders with spherically shaped particles are reported. It is shown that the compacts obtained from UD-powder have higher density and greater strength, microhardness, and structural uniformity with smaller grains than compacts obtained from nanopowder. Preliminary magnetic-pulse compaction of powders prior to sintering improves the characteristics of both compacts but higher density and strength with smaller grains are achieved in compacts obtained from UD-powder. In both cases of preliminary preparation the UD-powder compacts have advantages over nanopowder compacts.

Key words

nanopowders aluminum oxide spark plasma sintering magnetic-pulse compaction 


  1. 1.
    V. V. Ivanov, A. S. Kaygorodov, V. R. Khrustov, and S. N. Paranin, “Fine grained alumina-based ceramics produced using magnetic pulsed compaction,” in: Ceramic Materials – Progress in Modern Ceramics, Feng Shi, IntechOpen, April 5, 2012; DOI:
  2. 2.
    V. V. Ivanov, A. A. Nozdrin, C. H. Paranin, and S. V. Zayats, “Setup for pass-through magnetic-pulse compaction of powders,” in: Physics and Chemistry of Ultra-Disperse Systems: Proc. 5th All-Russia Conf. [in Russian], Ekaterinburg (2001), Vol. 1, pp. 229 – 233.Google Scholar
  3. 3.
    A. S. Kaigorodov, V. V. Ivanov, S. N. Paranin, and A. A. Nozdrin, “The role of adsorbates in pulsed compaction of oxide nanopowders,” Ross. Nanotekh., 2(1 – 2), 112 – 118 (2007).Google Scholar
  4. 4.
    G. H. Lee, C. K. Rhee, M. K. Lee, et al., “Nanostructures and mechanical properties of copper compacts prepared by magnetic pulsed compaction method,” Mater. Sci. Eng. A, 375 – 377(15), 604 – 608 (2004).Google Scholar
  5. 5.
    E. A. Olevsky and D. V. Dudina, “Magnetic pulse compaction,” in: Field-Assisted Sintering, Springer, Cham. (2018).Google Scholar
  6. 6.
    V. V. Ivanov, A. S. Kaigorodov, V. R. Khrustov, et al., “Hard ceramic based on aluminum oxide, obtained using magnetic-pulse compaction of composite nanopowders,” Ross. Nanotekh., 1(1 – 2), 201 – 207 (2006).Google Scholar
  7. 7.
    G. Sh. Boltachev, N. B. Volkov, A. S. Kaigorodov, and V. P. Loznukho, “Features of uniaxial quasistatic compaction of oxide nanopowders,” Ross. Nanotekh., 6(9 – 10), 125 – 130 (2011).Google Scholar
  8. 8.
    A. À. Nozdrin, “Study of the dynamic compactability of nanosized powders based on aluminum oxide,” Perspekt. Mater., No. 6, 79 – 85 (2007).Google Scholar
  9. 9.
    O. L. Khasanov, E. S. Dvilis, and Z. G. Bikbaeva, Methods of Compacting and Consolidating Nanostructured Materials and Products [in Russian], Izd. Tomsk Politekh. Univer., Tomsk (2008).Google Scholar
  10. 10.
    A. V. Samokhin, N. V. Alekseev, and Yu. V. Tsvetkov, “Plasmachemical processes for creating nanodisperse powder materials,” Khim. Vys. Energii, 40(2), 120 – 126 (2006).Google Scholar
  11. 11.
    V. P. Sirotinkin, V. F. Shamray, A. V. Samokhin, et al., “Phase composition of Al2O3 nanopowders obtained by plasma-chemical synthesis and subjected to additional heat-treatment,” Neorg. Mater., 48(4), 409 – 416 (2012).CrossRefGoogle Scholar
  12. 12.
    A. T. Tumanov (ed.), Handbook of Methods of Testing, Monitoring, and Researching Engineering Materials, Vol. II. Methods of Studying the Mechanical Properties of Metals [in Russian], Mashinostroenie, Moscow (1974).Google Scholar
  13. 13.
    S. Paranin, V. Ivanov, A. Nikonov, et al., “Densification of nanosized alumina powders under radial magnetic pulsed compaction,” Adv. Sci. Technol., 45, 899 – 904 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. A. Rubinkovskii
    • 1
    Email author
  • D. P. Shornikov
    • 1
  • A. V. Tenishev
    • 1
  • A. G. Zaluzhnyi
    • 1
  • A. G. Zholnin
    • 1
  1. 1.National Research Nuclear University – Moscow Engineering Physics Institute (MEPhI)MoscowRussia

Personalised recommendations