Advertisement

Glass and Ceramics

, Volume 76, Issue 1–2, pp 63–67 | Cite as

Methods of Producing Ceramic on the Basis of Metal Nitrides (Review)

  • A. M. TsarevaEmail author
  • A. V. Leonov
  • A. S. Lysenkov
  • M. A. Sevost’yanov
Article
  • 14 Downloads

Methods of obtaining metal nitrides are examined. The main advantages and disadvantages are highlighted for each method. The possibilities of using these materials in different industries are briefly discussed.

Key words

ceramic nitrides metal nitrides methods of production 

References

  1. 1.
    A. A. Gromov, Regularities in the Processes of Obtaining Nitrides and Oxynitrides of Group III and IV Elements by Burning Metal Powders in Air [in Russian], Tomsk Polytechnic University, Izd. TPU, Tomsk (2009).Google Scholar
  2. 2.
    L. Tot, Carbides and Nitrides of Transition Metals [Russian translation], Mir, Moscow (1974).Google Scholar
  3. 3.
    G. V. Samsonov, Nitrides [in Russian], Naukova Dumka, Kiev (1969).Google Scholar
  4. 4.
    L. Xu, S. Li, Y. Zhang, and Y. Zhai, “Synthesis, properties and applications of nanoscale nitrides, borides and carbides,” Nanoscale, 4(16), 4900 – 4915 (2012).CrossRefGoogle Scholar
  5. 5.
    D. Kim, T. Kim, H. Park, et al., “Synthesis of nanocrystalline magnesium nitride (Mg3N2) powder using thermal plasma,” Appl. Surf. Sci., 257(12), 5375 – 5379 (2011).CrossRefGoogle Scholar
  6. 6.
    A. A. Ditts, Oxynitride Ceramic Materials Based on the Products of Combustion of Commercial Powders of Metals in Air, Author’s Abstract of Candidate’s Thesis [in Russian], Tomsk Polytechnic University, Tomsk (2006).Google Scholar
  7. 7.
    A. Salamat, A. L. Hector, P. Kroll, P. F. McMillan, “Nitrogen-rich transition metal nitrides,” Coordination Chem. Rev., 257(13 – 14), 2063 – 2072 (2013).CrossRefGoogle Scholar
  8. 8.
    J. Ma, Y. Du, M. Wu, and M. C. Pan, “One simple synthesis route to nanocrystalline tantalum carbide via the reaction of tantalum pentachloride and sodium carbonate with metallic magnesium,” Mater. Lett., 61(17), 3658 – 3661 (2007).CrossRefGoogle Scholar
  9. 9.
    Y. Gu, L. Chen, and Y. Qian, “Synthesis of nanocrystalline boron carbide via a solvothermal reduction of CCl4 in the presence of amorphous boron powder,” J. Am. Ceram. Soc., 88(1), 225 – 227 (2005).CrossRefGoogle Scholar
  10. 10.
    J. P. Kelly, R. Kanakala, and O. A. Graeve, “A solvothermal approach for the preparation of nanostructured carbide and boride ultra-high-temperature ceramics,” J. Am. Ceram. Soc., 93(10), 3035 – 3038 (2010).CrossRefGoogle Scholar
  11. 11.
    S. Feng and R. Xu, “New materials in hydrothermal synthesis,” Accounts Chem. Res., 34(3), 239 – 247 (2001).CrossRefGoogle Scholar
  12. 12.
    D. R. Modeshia and R. I. Walton, “Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions,” Chem. Soc. Rev., 39(11), 4303 – 4325 (2010).CrossRefGoogle Scholar
  13. 13.
    R. I. Walton, “Subcritical solvothermal synthesis of condensed inorganic materials,” Chem. Soc. Rev., 31(4), 230 – 238 (2002).CrossRefGoogle Scholar
  14. 14.
    M. Yang, M. J. MacLeod, F. Tessier, et al., “Mesoporous metal nitride materials prepared from bulk oxides,” J. Am. Ceram. Soc., 95(10), 3084 – 3089 (2012).CrossRefGoogle Scholar
  15. 15.
    J. Huo, H. Song, X. Chen, and W. Lian, “Formation and transformation of carbon-encapsulated iron carbide/iron nanorods,” Carbon, 13(44), 2849 – 2852 (2006).CrossRefGoogle Scholar
  16. 16.
    D.W. Lee, J. U. Yu, B. K. Kim, et al., “Fabrication of ferromagnetic iron carbide nanoparticles by a chemical vapor condensation process,” J. Alloys Compounds, 449(1 – 2), 60 – 64 (2008).CrossRefGoogle Scholar
  17. 17.
    Y. J. Zhu and F. Chen, “Microwave-assisted preparation of inorganic nanostructures in liquid phase,” Chem. Rev., 114(12), 6462 – 6555 (2014).CrossRefGoogle Scholar
  18. 18.
    A. E. Baranchikov, V. K. Ivanov, and Yu. D. Tretyakov, “Sonochemical synthesis of inorganic materials,” Adv. Chem., 76(2), 147 – 168 (2007).Google Scholar
  19. 19.
    A. I. Gusev and A. A. Rempel, Nanocrystalline Materials [in Russian], Fizmatlit, Moscow (2001).Google Scholar
  20. 20.
    A. P. Ilyin, A. A. Gromov, and L. O. Tolbanova, “The phenomenon of chemical binding of air nitrogen with formation of nitride crystalline phases during the combustion of powdered metals, boron and silicon,” Basic Res., No. 4, 13 – 18 (2008).Google Scholar
  21. 21.
    Yu. D. Afonin, A. R. Beketov, A. V. Anipko, et al., “Method of producing filamentary aluminum nitride, Pat. RF 2312061,” Byull. Izobr. Polezn. Modeli, No. 34 (2006).Google Scholar
  22. 22.
    A. A. Elagin, R. A. Shishkin, Yu. D. Afonin, et al., “Process mechanism and technology for the gas-phase synthesis of aluminum nitride,” Sovr. Probl. Nauki Obraz., No. 3, 9 (2013).Google Scholar
  23. 23.
    V. S. Kudyakova, V. V. Bannikov, A. A. Elagin, et al., “Gas-phase synthesis of the hexagonal and cubic phases of aluminum nitride: method and its advantages,” Pis’ma Zh. Tekh. Fiz., 42(5), 74 – 80 (2016).Google Scholar
  24. 24.
    G. Z. Chen, D. J. Fray, and T.W. Farthing, “Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride,” Nature, 407(6802), 361 – 364 (2000).CrossRefGoogle Scholar
  25. 25.
    Huayi Yin, Tang Yu, Diyong Tang, et al., “Electrochemical preparation of NiAl intermetallic compound from solid oxides in molten CaCl2 and its corrosion behaviors in NaCl aqueous solution,” Mater. Chem. Phys., 133(1), 465 – 470 (2012).CrossRefGoogle Scholar
  26. 26.
    B. Zhao, L. Wang, L. Dai, et al., “Direct electrolytic preparation of cerium/nickel hydrogen storage alloy powder in molten salt,” J. Alloys Compounds, 468(1 – 2), 379 – 385 (2009).Google Scholar
  27. 27.
    E. K. Marieva, Electrochemical Synthesis of Titanium Dioxide and Titanium Nitride in Aqueous Organic Electrolytes, Author’s Abstract of Candidate’s Thesis [in Russian], Southern Federal University, Taganrog (2013).Google Scholar
  28. 28.
    M. Yang, M. J. MacLeod, F. Tessier, and F. J. DiSalvo, “Mesoporous metal nitride materials prepared from bulk oxides,” J. Am. Ceram. Soc., 95(10), 3084 – 3089 (2012).CrossRefGoogle Scholar
  29. 29.
    G. Jiang, F. Xu, Sh. Yang, et al., “Mesoporous, conductive molybdenum nitride as efficient sulfur hosts for high-performance lithium-sulfur batteries,” J. Power Sources, 395, 77 – 84 (2018).CrossRefGoogle Scholar
  30. 30.
    M. Yang, A. J. Allen, M. T. Nguyen, et al., “Corrosion behavior of mesoporous transition metal nitrides,” J. Solid State Chem., 205, 49 – 56 (2013).CrossRefGoogle Scholar
  31. 31.
    N. A. Shabanova and P. D. Sarkisov, Sol-Gel Technology. Nanodispersed Silica [in Russian], BINOM. Laboratoriya Znanii, Moscow (2012) (Nanotechnology).Google Scholar
  32. 32.
    C. Sanchez, G. J. A. A. Soler-Illia, F. Ribot, et al., “Designed hybrid organic – inorganic nanocomposites from functional nanobuilding blocks,” Chem. Mater., 13(10), 3061 – 3083 (2001).CrossRefGoogle Scholar
  33. 33.
    P. A. Agaskar, “Organolithic macromolecular materials derived from vinyl-functionalized spherosilicates: novel potentially microporous solids,” J. Am. Chem. Soc., 111(17), 6858 – 6859 (1989).CrossRefGoogle Scholar
  34. 34.
    D. C. Bradley and I. Ms. Thomas, “Metallo-organic compounds containing metal–nitrogen bonds. Pt I. Some dialkylamino derivatives of titanium and zirconium,” J. Chem. Soc. (Resumed), 3857 – 3861 (1960).Google Scholar
  35. 35.
    G. M. Brown and L. Maya, “Ammonolysis products of the dialkylamides of titanium, zirconium, and niobium as precursors to metal nitrides,” J. Am. Ceram. Soc., 71(1), 78 – 82 (1988).CrossRefGoogle Scholar
  36. 36.
    J. A. Nelson and M. J. Wagner, “High surface area Mo2C and WC prepared by alkalide reduction,” Chem. Mater., 14(4), 1639 – 1642 (2002).CrossRefGoogle Scholar
  37. 37.
    M. Lei, H. Z. Zhao, H. Yang, et al., “Synthesis of transition metal carbide nanoparticles through melamine and metal oxides,” J. Europ. Ceram. Soc., 28(8), 1671 – 1677 (2008).CrossRefGoogle Scholar
  38. 38.
    K. L. Faershtein, Synthesis of BN Nanostructures and Their Application for Hardening of Lightweight Al-Based Metallic Matrices, Author’s Abstract of Candidate’s Thesis [in Russian], NITU MISiS, Moscow (2016).Google Scholar
  39. 39.
    A. G. Merzhanov, Combustion Processes and Synthesis of Materials [in Russian], ISMAN, Chernogolovka (1998).Google Scholar
  40. 40.
    G. V. Bichurov, “The use of halides in SHS azide technology,” Int. J. Self Prop. High Temp. Synthesis, 9(2), 247 – 268 (2000).Google Scholar
  41. 41.
    G. V. Bichurov, “Self-propagating high-temperature synthesis of refractory nitrides using sodium azide and halide salts,” Izv. Vyssh. Ucheb. Zaved., Tsvetn. Met., No. 2, 55 – 61 (2001).Google Scholar
  42. 42.
    D. A. Maidan and G. V. Bichurov, “Self-propagating high-temperature synthesis of group-IV, -V, and -VIII metal nitrides using sodium azide and ammonium halide salts,” Izv. Vyssh. Ucheb. Zaved., Tsvetn. Met., No. 2, 76 – 80 (2001).Google Scholar
  43. 43.
    V. V. Barzykin, “Thermal explosion in the technology of inorganic materials,” in: A. E. Sychev (ed.), Self-Propagating High-Temperature Synthesis: Theory and Practice [in Russian], Territoriya, Chernogolovka (2001), p. 8.Google Scholar
  44. 44.
    A. P. Amosov and G. V. Bichurov, Azide Technology of Self-Propagating High-Temperature Synthesis of Nitride Micro- and Nanopowders [in Russian], Mashinostroenie-1, Moscow (2007).Google Scholar
  45. 45.
    A. G. Merzhanov, I. P. Borovinskaya, and Yu. E. Volodin, “On the mechanism of combustion of porous metal samples in nitrogen,” Dokl. Akad. Nauk SSSR, 206(4), 905 – 908 (1972).Google Scholar
  46. 46.
    R. A. Andrievski, “Nanomaterials based on high-melting carbides, nitrides and borides,” Russ. Chem. Rev., 74(12), 1063 – 1175 (2005).CrossRefGoogle Scholar
  47. 47.
    K. Wu, Q. Luo, S. Chen, et al., “Hydrogen storage in a Li–Al–N ternary system,” Int. J. Hydrogen Energy, 34(19), 8101 – 8107 (2009).CrossRefGoogle Scholar
  48. 48.
    H. W. Langmi and G. S. McGrady, “Ternary nitrides for hydrogen storage: Li–B–N, Li–Al–N and Li–Ga–N systems,” J. Alloys Compounds, 466(1 – 2), 287 – 292 (2008).CrossRefGoogle Scholar
  49. 49.
    G. C. Hadjipanayis, “Nanophase hard magnets,” J. Magn. Magn. Mater., 200(1 – 3), 373 – 391 (1999).CrossRefGoogle Scholar
  50. 50.
    S. T. Oyama, Chemistry of Transition Metal Carbides and Nitrides, Blackie Academic & Professional, London (1996).CrossRefGoogle Scholar
  51. 51.
    A. M. Alexander and J. S. J. Hargreaves, “Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys,” Chem. Soc. Rev., 39(11), 4388 – 4401 (2010).CrossRefGoogle Scholar
  52. 52.
    H. Chen, W. Wen, Q. Wang, et al., “In situ XRD studies of ZnO/GaN mixtures at high pressure and high temperature: synthesis of Zn-rich (Ga1–xZnx)(N1–xOx) photocatalysts,” J. Phys. Chem. C, 114(4), 1809 – 1814 (2010).CrossRefGoogle Scholar
  53. 53.
    M. D. Hernández-Alonso, F. Fresno, S. Suarez, and J. M. Coronado, “Development of alternative photocatalysts to TiO2: challenges and opportunities,” Energy & Environmental Sci., 2(12), 1231 – 1257 (2009).CrossRefGoogle Scholar
  54. 54.
    S. Yamanaka, K. Hotehama, and H. Kawaji, “Superconductivity at 25.5 K in electron-doped layered hafnium nitride,” Nature, 392(6676), 580 – 582 (1998).CrossRefGoogle Scholar
  55. 55.
    I. Tanakaa, G. Pezzotti, T. Okamoto, et al., “Hardness of cubic silicon nitride,” J. Mater. Res., 17(4), 731 – 733 (2002).CrossRefGoogle Scholar
  56. 56.
    Y. Tian, B. Xu, Y. Dongli, et al., “Ultrahard nanotwinned cubic boron nitride,” Nature, 493(7432), 385 (2013).CrossRefGoogle Scholar
  57. 57.
    O. A. Williams, “Nanocrystalline diamond,” Diamond Related Mater., 20(5 – 6), 621 – 640 (2011).CrossRefGoogle Scholar
  58. 58.
    S. Niyomsoan, W. Grant, D. L. Olson, et al., “Variation of color in titanium and zirconium nitride decorative thin films,” Thin Solid Films, 415(1 – 2), 187 – 194 (2002).CrossRefGoogle Scholar
  59. 59.
    J. A. Arsecularatne, L. C. Zhang, and C. Montross, “Wear and tool life of tungsten carbide, PCBN and PCD cutting tools,” Int. J. Machine Tools Manuf., 46(5), 482 – 491 (2006).CrossRefGoogle Scholar
  60. 60.
    O. Ambacher, “Growth and applications of group III-nitrides,” J. Phys. D, Appl. Phys., 31(20), 2653 – 2710 (1998).CrossRefGoogle Scholar
  61. 61.
    W. J. Feng, N. K. Sun, J. Du, et al., “Structural evolution and magnetic properties of Mn–N compounds,” Solid State Commun., 148(5 – 6), 199 – 202 (2008).CrossRefGoogle Scholar
  62. 62.
    K. A. Aissa, N. Semmar, A. Achour, et al., “Achieving high thermal conductivity from AlN films deposited by high-power impulse magnetron sputtering,” J. Phys. D: Appl. Phys., 47; DOI:  https://doi.org/10.1088/0022-3727/47/35/355303.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. M. Tsareva
    • 1
    Email author
  • A. V. Leonov
    • 1
  • A. S. Lysenkov
    • 1
  • M. A. Sevost’yanov
    • 1
  1. 1.A. A. Baikov Institute of Metallurgy and Materials ScienceRussian Academy of Sciences (IMET RAN)MoscowRussia

Personalised recommendations