Glass and Ceramics

, Volume 76, Issue 1–2, pp 27–32 | Cite as

Production of Aluminum-Graphite Composite by Spark Plasma Sintering

  • N. A. RubinkovskiiEmail author
  • D. P. Shornikov
  • A. V. Tenishev
  • A. G. Zaluzhnyi
  • A. G. Zholnin

An aluminum-graphite composite was obtained by spark plasma sintering. The graphite particle size, compaction temperature, and soaking time were shown to influence the aluminum carbide formation process. It is demonstrated that the use of larger graphite plates decreases Al4C3 formation by almost a factor of two. The influence of the graphite content on the density, CLTE, and thermal conductivity of the composite was studied. It was found that for graphite weight content above 70% the thermophysical properties of compacts degrade significantly because large numbers of pores are formed.

Key words

aluminum graphite spark plasma sintering thermal conductivity microstructure 


This work was supported by the Ministry of Education and Science of the Russian Federation, project No. 11.1957.2017 4.6, and by the Competitiveness Program of National Research Nuclear University MEPhI (Moscow Engineering Physics Institute).


  1. 1.
    D. Miracle, “Metal matrix composites — From science to technological significance,” Compos. Sci. Technol., 65, 2526 (2005).CrossRefGoogle Scholar
  2. 2.
    S. C. Tjong, “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets,” Mater. Sci. Eng., 74, 281 (2013).CrossRefGoogle Scholar
  3. 3.
    B. Bhav Singh B and M. Balasubramanian, “Processing and properties of copper-coated carbon fiber reinforced aluminium alloy composites,” J. Mater. Proc. Technol., 209, 2104 (2009).Google Scholar
  4. 4.
    T. T. Liu, X. B. He, Q. Liu, et al., “Fabrication and thermal conductivity of short graphite fiber Al composites by vacuum pressure infiltration,” J. Mater. Eng. Perform., 22, 1649 (2013).CrossRefGoogle Scholar
  5. 5.
    H. Ouyang, H. Li, L. Qi, et al., “Fabrication of short carbon fiber preforms coated with pyrocarbon SiC for liquid metal infiltration,” J. Mater. Sci., 43, 4618 (2008).CrossRefGoogle Scholar
  6. 6.
    J. M. Ting and M. L. Lake, “Vapor-grown carbon-fiber rein forced carbon composites,” J. Mater. Res., 10, 247 (1995).CrossRefGoogle Scholar
  7. 7.
    J. Cai, Y. Chen, V. F. Nesterenko, and M. A. Meyers, “Effect of strain rate on the mechanical properties of aluminum alloy matrix composite filled with discontinuous carbon fibers,” Mater. Sci. Eng. A, 485, 681 (2008).CrossRefGoogle Scholar
  8. 8.
    K. K. Chawla and N. Chawla, Metal Matrix Composites, Wiley, Hoboken (2006).Google Scholar
  9. 9.
    J. M. Chiou, B. Y. Wei, and C. M. Chen, “The effects of binders and heating temperatures on the properties of preforms,” J. Mater. Eng. Perform., 2, 383 (1993).CrossRefGoogle Scholar
  10. 10.
    M. Jacquesson, A. Girard, M. H. Vidal-Se?tif, and R. Valle, “Fatigue behaviour of aluminium matrix composites reinforced with continuous alumina fibres,” Metall. Mater. Trans. A, 35, 3289 (2004).Google Scholar
  11. 11.
    I. E. Monje, E. Louis, and J. M. Molina, “Optimizing thermal conductivity in gas-pressure infiltrated aluminum diamond composites by precise processing control,” Composites A, 48(9) (2013).CrossRefGoogle Scholar
  12. 12.
    Y. H. Liu, J. Du, S. R. Yu, and W. Wang, “Creating defects on graphene basal-plane toward interface optimization of graphene CuCr composites,” Wear, 256, 275 (2004).CrossRefGoogle Scholar
  13. 13.
    Z. Tan, Z. Li, G. Fan, et al., “Diamond aluminum composites processed by vacuum hot pressing: Microstructure characteristics and thermal properties,” Diam. Relat. Mater., 31(1) (2013).Google Scholar
  14. 14.
    K. Mizuuchi, K. Inoue, Y. Agari, et al., “Processing of diamond particle dispersed aluminum matrix composites in continuous solid-liquid co-existent state by SPS and their thermal properties,” Composites B, 42, 825 (2011).CrossRefGoogle Scholar
  15. 15.
    K. Landry, S. Kalogeropoulou, and N. Eustathopoulos, “Wettability of carbon by aluminum and aluminum alloys,” Mater. Sci. Eng. A, 254, 99 (1998).CrossRefGoogle Scholar
  16. 16.
    Z. Tan, Z. Li, G. Fan, et al., “Fabrication of diamond aluminum composites by vacuum hot pressing: Process optimization and thermal properties,” Composites B, 47, 173 (2013).CrossRefGoogle Scholar
  17. 17.
    K. Chu, C. Jia, X. Liang, et al., “Effect of particle size on the microstructure and thermal conductivity of Al diamond composites prepared by spark plasma sintering,” Rare Met., 28, 646 (2009).CrossRefGoogle Scholar
  18. 18.
    T. Etter, P. Schulz, M. Weber, et al., “Aluminum carbide formation in interpenetrating graphite aluminum composites,” Mater. Sci. Eng. A, 448(1 - 2), 1 - 6 (2007).CrossRefGoogle Scholar
  19. 19.
    B. Revzin, D. Fuks, and J. Pelleg, “Influence of alloying on the solubility of carbon fibers in aluminium-based composites: non-empirical approach,” Composites. Sci. Technol., 56, 3 - 10 (1996).CrossRefGoogle Scholar
  20. 20.
    K. Mizuuchi, K. Inoue, Y. Agari, et al., “Processing of diamond particle dispersed aluminum matrix composites in continuous solid-liquid co-existent state by SPS and their thermal properties,” Composites B Eng., 42(4), 825 - 831 (2011).CrossRefGoogle Scholar
  21. 21.
    J. K. Chen and I. S. Huang, “Thermal properties of aluminum-graphite composites by powder metallurgy,” Composites B ng., 42(2), 790 - 825 (2012).Google Scholar
  22. 22.
    Hiroki Kurita, J.-F. Silvain, and Akira Kawasaki, “Microstructure of a carbon fiber-reinforced aluminum matrix composite fabricated by spark plasma sintering in various pulse conditions,” J. Mater. Sci., 49(8), 3268 - 3275 (2014).Google Scholar
  23. 23.
    R. N. Lumley, T. B. Sercombe, and G. B. Schaffer, “Surface oxide and the role of magnesium during the sintering of aluminium,” Metall. Mater. Trans. A, 30, 457 - 463 (1999).CrossRefGoogle Scholar
  24. 24.
    P. S. Turner, “Thermal-expansion stresses in reinforced plastics,” J. Res. NBS, 37, 239 - 250 (1946).Google Scholar
  25. 25.
    E. H. Kerner, “The Elastic and Thermo-elastic Properties of Composite Media,” Proc. Phys. Soc. B, 69, 808 - 813 (1956).CrossRefGoogle Scholar
  26. 26.
    K. A. Khor, L. G. Yu, O. Andersen, and G. Stephani, “Effect of spark plasma sintering (SPS) on the microstructure and mechanical properties of randomly packed hollow sphere (RHS) cell wall,” Mater. Sci. Eng. A, 356, 130 - 135 (2003).CrossRefGoogle Scholar
  27. 27.
    U. Anselmi-Tamburini, S. Gennari, J. E. Garay, and Z. A. Munir, “Fundamental investigations on the spark plasma sintering synthesis process. II. Modeling of current and temperature distributions,” Mater. Sci. Eng. A, 394, 139 - 148 (2005).CrossRefGoogle Scholar
  28. 28.
    H. Kurita, H. Kwon, M. Estili, and A. Kawasaki, “Multi-walled carbon nanotube-aluminium matrix composites prepared by combination of hetero-agglomeration method, spark plasma sintering and hot extrusion,” Mater. Trans., 52(10), 1960 - 1965 (2011).CrossRefGoogle Scholar
  29. 29.
    G. Lalet, H. Kurita, J.-M. Heintz, et al., “Thermal expansion coefficient and thermal fatigue of discontinuous carbon fiber-rein-forced copper and aluminum matrix composites without interfacial chemical bond,” J. Mater. Sci., 49, 397 - 402 (2014), doi: 10.1007 s10853-013-7717-7.Google Scholar
  30. 30.
    M. Eriksson, Z. Shen, and M. Nygren, “Fast densification and deformation of titanium powder,” Powder Metall., 48, 231 – 236 (2005).CrossRefGoogle Scholar
  31. 31.
    C. J. Chang, C. H. Chang, J. D. Hwang, and C. T. Kuo, “Thermal characterization of high thermal conductive graphites reinforced aluminum matrix composites,” in: Proc. IMPACT Conference 2009 International 3D IC conference, Taipei, Taiwan, October 2009, Taipei (2009).Google Scholar
  32. 32.
    S. Baglari, M. Kole, and T. K. Dey, “Effective thermal conductivity and coefficient of linear thermal expansion of high-density polyethylene-fly ash composites,” Ind. J. Phys., 85(4), 559 - 73 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. A. Rubinkovskii
    • 1
    Email author
  • D. P. Shornikov
    • 1
  • A. V. Tenishev
    • 1
  • A. G. Zaluzhnyi
    • 1
  • A. G. Zholnin
    • 1
  1. 1.National Research Nuclear University - Moscow Engineering Physics InstituteMoscowRussia

Personalised recommendations