Glass and Ceramics

, Volume 76, Issue 1–2, pp 7–10 | Cite as

Synthesis Temperature Influence on the AlMgB14 Phase Composition

  • D. D. NesmelovEmail author
  • D. P. Danilovich
  • S. N. Perevislov
  • S. S. Ordan’yan

The influence of the synthesis temperature on the phase composition, size distribution, and morphology of AlMgB14 particles, obtained by direct interaction of powders of elementary Al, Mg, and B with the addition of free carbon in vacuum 10 – 2 Pa at 1200 – 1400°C, was studied. The synthesized powders were analyzed by means of x-ray diffraction, SEM, EDX, and laser diffraction. The highest mass content of the main phase AlMgB14 (94%) was obtained at synthesis temperature 1200 – 1300°C with 1 h soaking. Impurity MgAl2O4 as well as magnesium-depleted spinel and AlB12 were recorded at soaking temperature above 1300°C.


aluminum-magnesium boride synthesis light-density borides phase composition particle-size distribution nano-size powder 


This work was supported by RFBR (contract No. 17-03-00863 A) and was performed using equipment from the Engineering Center at the St. Petersburg State Institute of Technology (Technological University).


  1. 1.
    O. A. Golikova, “Amorphous boron and amorphous-like borides,” Phys. Status Solidi Appl. Res., 113, No. 1, 1 – 3 (1989).CrossRefGoogle Scholar
  2. 2.
    B. A. Cook, J. L. Harringa, J. Anderegg, et al., “Analysis of wear mechanisms in low-friction AlMgB14–TiB2 coatings,” Surf. Coat. Technol., 205(7), 2296 – 2301 (2010).CrossRefGoogle Scholar
  3. 3.
    Y. M. Zhou, F. L. Zhang, P. C. Li, et al., “Synthesis and characterization of AlMgB14–Ni3Al composites for cutting tool materials,” Adv. Mater. Res. Trans. Tech. Publ., 1136, 257 – 262 (2016).Google Scholar
  4. 4.
    V. I. Matkovich and J. Economy, “Structure of MgAlB14 and a brief critique of structural relationships in higher borides,” Acta Crystallogr., Sec. B, 26(5), 616 – 621 (1970).CrossRefGoogle Scholar
  5. 5.
    I. Higashi and T. Ito, “Refinement of the structure of MgAlB14,” J. Less-Common Met., 92(2), 239 – 246 (1983).CrossRefGoogle Scholar
  6. 6.
    B. A. Cook, J. L. Harringa, T. L. Lewis, and A. M. Russell, “A new class of ultra-hard materials based on AlMgB14,” Scr. Mater., 42(6), 597 – 602 (2000).CrossRefGoogle Scholar
  7. 7.
    A. Ahmed, S. Bahadur, B. A. Cook, and J. Peters, “Mechanical properties and scratch test studies of new ultra-hard AlMgB14 modified by TiB2,” Tribology Int., 39(2), 129 – 137 (2006).CrossRefGoogle Scholar
  8. 8.
    A. Ahmed, S. Bahadur, A. M. Russell, and B. A. Cook, “Belt abrasion resistance and cutting tool studies on new ultra-hard boride materials,” Tribology Int., 42(5), 706 – 713 (2009).CrossRefGoogle Scholar
  9. 9.
    Z. Xie, V. DeLucca, R. A. Haber, et al., “Aluminium magnesium boride: synthesis, sintering and microstructure,” Adv. Appl. Ceram., 116(6), 341 – 347 (2017).CrossRefGoogle Scholar
  10. 10.
    I. A. Zhukov, M. K. Ziatdinov, Y. A. Dubkova, and P. Yu. Nikitin, “Synthesis of AlMgB14: influence of mechanical activation of Al–Mg–B powder mixture on phase composition of sintered materials,” Izv. Vyssh. Ucheb. Zaved., Fiz., 61(8), 87 – 92 (2018); I. A. Zhukov, M. K. Ziatdinov, Y. A. Dubkova, and P. Yu. Nikitin, “Synthesis of AlMgB14: influence of mechanical activation of Al–Mg–B powder mixture on phase composition of sintered materials,” Russian Phys. J., 243, 1 – 6 (2018).Google Scholar
  11. 11.
    P. Nikitin, I. Zhukov, A. Vorozhtsov, et al., “Effect of dispersity of powder system Al–Mg–B on the phase composition of sintered ceramics AlMgB14 ,” MATEC Web of Conferences, EDP Sciences, 243, 00009 (2018).CrossRefGoogle Scholar
  12. 12.
    V. Kevorkijan, S. D. Škapin, and D. Suvorov, “Synthesis and characterisation of ultra-hard and lightweight AlMgB14–xTiB2 composites for wear-resistance and ballistic protection,” Metall. Mater. Eng., 21(1), 45 – 56 (2015).CrossRefGoogle Scholar
  13. 13.
    C. S. Li, F. Yang, G. Yan, et al., “AlMgB14–TiB2 synthesized by a two-step heat-treatment method,” J. Alloys Compounds, 587, 790 – 793 (2014).CrossRefGoogle Scholar
  14. 14.
    Z. Yumei, Z. Fenglin, L. Pengcheng, et al., “Synthesis and characterization of AlMgB14 hot pressed under different environments,” Sci. Sint., 49(3), 311 – 317 (2017).CrossRefGoogle Scholar
  15. 15.
    W. Liu, C. X. Luo, J. X. Yan, and T. M. Zhang, “Mechanism of reactive sintering of AlMgB14 by the field activated and pressure assisted synthesis,” Integr. Ferroelectrics, 159(1), 98 – 107 (2015).CrossRefGoogle Scholar
  16. 16.
    Y. Zhou, F. Zhang, P. Li, et al., “A study on ultra-hard AlMgB14 modified by TiB2 and Ni3Al,” Mater. Sci. Forum, 848, 607 – 612 (2016).CrossRefGoogle Scholar
  17. 17.
    M. H. Yuzvyuk, V. V. Putrolaynen, and A. M. Grishin, “Processing of ultra-hard coatings based on AlMgB14 films,” J. Phys.: Conf. Ser. – IOP Publishing, 769(1), 012039 (2016).Google Scholar
  18. 18.
    W. Liu, Y. Miao, Q. Meng, and S. Chen, “Structural characterization of AlMgB14 prepared by field-activated, pressure-assisted synthesis,” J. Mater. Sci. Technol., 29(1), 77 – 81 (2013).CrossRefGoogle Scholar
  19. 19.
    V. Kevorkijan, S. D. Skapin, and M. Jelen, “Synthesis of ultra-hard, superabrasive AlMgB14 and AlMgB14–x–TiB2 composites from Al–Mg–B ternary system,” in: Proc. 2nd Inter. Conference on Deformation Processing and Structure of Materials, Belgrade, Serbia and Montenegro, 2005, Belgrade (2005), pp. 95 – 100.Google Scholar
  20. 20.
    A. Altomare, N. Corriero, C. Cuocci, et al. “Main features of QUALX2.0 software for qualitative phase analysis,” Powder Diffr., 32(1), 129 – 134 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. D. Nesmelov
    • 1
    Email author
  • D. P. Danilovich
    • 1
  • S. N. Perevislov
    • 2
  • S. S. Ordan’yan
    • 1
  1. 1.St. Petersburg State Technological Institute (Technical University)St. PetersburgRussia
  2. 2.I. V. Grebenshchikov Institute of Silicate ChemistrySt. PetersburgRussia

Personalised recommendations