Glass and Ceramics

, Volume 75, Issue 9–10, pp 400–407 | Cite as

Production of Ceramic Materials Based on SiC with Low-Melting Oxide Additives

  • S. N. PerevislovEmail author
  • A. S. Lysenkov
  • D. D. Titov
  • M. V. Tomkovich
  • K. A. Kim
  • M. G. Frolova
  • Yu. F. Kargin
  • I. S. Mel’nikova

Dense materials based on silicon carbide were obtained by liquid-phase sintering. The oxides MgO, Y2O3 , and Al2O3 , corresponding to the composition of yttrium-aluminum garnet and the triple eutectic point on the line of binary sections garnet-spinel, were used as the sintering additive. The oxides were deposited on the surface of powder by the SiC method of coprecipitation from a solution of salts. The maximum density (ρrel = 99.5%) was attained on SiC materials which include 20% (by weight) sintering additives consisting of a three-component oxide mixture at temperature 1800°C.

Key words

coprecipitation from a solution of salts liquid-phase sintering silicon carbide yttrium-aluminum garnet microstructure strength in bending 


This work was supported by the Russian Foundation for Basic Research (grant Mol a 18-33-00383).

The methodological part of this work (XPA, granulometry and scanning electron microscopy) was performed as part of the government task No. 007-00129-18-00.


  1. 1.
    V. A. Izhevskyi, L. A. Genova, J. C. Bressiani, and A. H. A. Bressiani, “Silicon carbide. Structure, properties and processing,” Cerâmica, 46(297), 4 – 13 (2000).CrossRefGoogle Scholar
  2. 2.
    K. A. Schwetz, “Silicon carbide based hard materials,” in: Handbook of Ceramic Hard Materials, Wiley-VCH, Weinheim (2000), pp. 683 – 748.Google Scholar
  3. 3.
    A. Can, M. Herrmann, D. S. McLachlan, et al., “Densification of liquid phase sintered silicon carbide,” J. Eur. Ceram. Soc., 26(9), 1707 – 1713 (2006).CrossRefGoogle Scholar
  4. 4.
    Y.W. Kim, J. Y. Kim, S. H. Rhee, and D. Y. Kim, “Effect of initial particle size on microstructure of liquid-phase sintered σ-silicon carbide,” J. Eur. Ceram. Soc., 20, 945 – 949 (2000).CrossRefGoogle Scholar
  5. 5.
    T. Tachiwaki, M. Yoshinaka, K. Hirota, et al., “Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics,” Solid State Comm., 119(10–11), 603 – 606 (2001).CrossRefGoogle Scholar
  6. 6.
    S.-G. Lee,W.-H. Shim, J.-Y. Kim, et al., “Effect of sintering-additive composition on fracture toughness of liquid-phase-sintered SiC ceramics,” J. Mater. Sci. Lett., 20, 143 – 146 (2001).CrossRefGoogle Scholar
  7. 7.
    K.-S. Cho, H.-J. Choi, J.-G. Lee, and Y. W. Kim, “R-curve behavior of layered silicon carbide ceramics with surface fine microstructure,” J. Mater. Sci., 36, 2189 – 2193 (2001).CrossRefGoogle Scholar
  8. 8.
    E. Nogales, A. Montone, F. Cardellini, et al., “Visible cathodoluminescence from mechanically milled germanium,” Semicond. Sci. Techn., 17, 1267 – 1271 (2002).CrossRefGoogle Scholar
  9. 9.
    Z. Huang, D. C. Jia, Y. Zhou, and Y. G. Liu, “A new sintering additive for silicon carbide ceramic,” Ceram. Int., 29, 13 – 17 (2003).CrossRefGoogle Scholar
  10. 10.
    N. Hidaka, Y. Hirata, S. Sameshima, and H. Sueyoshi, “Hot-pressing and mechanical properties of SiC ceramics with polytitanocarbosilane,” J. Ceram. Proc. Res., 5(4), 331 – 336 (2004).Google Scholar
  11. 11.
    X.-Zh. Guo and H. Yang, “Sintering and microstructure of silicon carbide ceramic with Y3Al5O12 added by sol-gel method,” J. Zhejiang Univ SCI., 6(3), 213 – 218 (2005).CrossRefGoogle Scholar
  12. 12.
    V. G. Sevastyanov, E. P. Simonenko, N. P. Simonenko, and N. T. Kuznetsov, “Synthesis of fine-dispersed yttrium-aluminum garnet Y3Al5O12 via sol-gel technique,” in: 15th European Conference on Composite Materials, Venice, Italy, 24 – 28 June 2012, Venice (2012), Vol. 4, pp. 1 – 8.Google Scholar
  13. 13.
    E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, and N. T. Kuznetsov, “Synthesis of ultrafine yttrium aluminum garnet using sol-gel technology,” Russ. J. Inorg. Chem., 57(12), 1521 – 1528 (2012).CrossRefGoogle Scholar
  14. 14.
    Zh. Yongheng, “Surface modification of ceramic powders by complexes of metal ions in aqueous media,” J. Mater. Sci. Lett., 21, 1723 – 1725 (2002).CrossRefGoogle Scholar
  15. 15.
    Y.-T. Nien, Y.-L. Chen, I.-G. Chen, et al., “Synthesis of nanoscaled yttrium aluminum garnet phosphor by coprecipitation method with HMDS treatment,” Mater. Chem. Phys., 93, 79 – 83 (2005).CrossRefGoogle Scholar
  16. 16.
    S. N. Perevislov, I. B. Panteleev, S. V. Vikhman, et al., “Co-precipitation of oxides from a solution of salts on the surface of silicon carbide particles,” Ogneup. Tekh. Keram., No. 9, 9 – 16 (2005).Google Scholar
  17. 17.
    S. N. Perevislov, I. B. Panteleev, A. P. Shevchik, and M. V. Tomkovich, “Microstructure and mechanical properties of SiC-materials sintered in the liquid phase with the addition of a finely dispersed agent,” Refract. Industr. Ceram., 58(5), 577 – 582 (2018).CrossRefGoogle Scholar
  18. 18.
    S. Kikkawa, A. Kijimab, K. Hirotab, and O. Yamaguchi, “Soft solution preparation methods in a ZrO2–Al2O3 binary system,” Solid State Ionics, 151, 359 – 364 (2002).CrossRefGoogle Scholar
  19. 19.
    J. L. Lorca, J. Y. Pastor, and P. Poza, “Influence of the Y2O3 content and temperature on the mechanical properties of melt-grown Al2O3–ZrO2 eutectics,” J. Am. Ceram. Soc., 87(4), 633 – 639 (2004).CrossRefGoogle Scholar
  20. 20.
    D. D. Nesmelov, O. A. Kozhevnikov, S. S. Ordanyan, and S. N. Perevislov, “Deposition of the eutectic composition Al2O3–ZrO2(Y2O3) on the surface of SiC particles,” Steklo Keram., No. 2, 9 – 14 (2017); D. D. Nesmelov, O. A. Kozhevnikov, S. S. Ordanyan, and S. N. Perevislov, “Precipitation of the eutectic composition Al2O3–ZrO2(Y2O3) on the surface of SiC particles,” Glass Ceram., 74(1 – 2), 43 – 47 (2017).Google Scholar
  21. 21.
    H. S. Kim, M. K. Kim, S. B. Kang, et al., “Bending strength and crackhealing behavior of Al2O3 /SiC composites ceramics,” Mater. Sci. Eng. A, 483–484, 672 – 675 (2008).CrossRefGoogle Scholar
  22. 22.
    W. Nakao, M. Ono, S. Lee, et al., “Critical crack-healing condition for SiC whisker reinforced alumina under stress,” J. Eur. Ceram. Soc., 25, 3649 – 3655 (2005).CrossRefGoogle Scholar
  23. 23.
    K. Andoa, M.-Ch. Chua, K. Tsujib, et al., “Crack healing behaviour and high-temperature strength of mullite/SiC composite ceramics,” J. Eur. Ceram. Soc., 22, 1313 – 1319 (2002).CrossRefGoogle Scholar
  24. 24.
    K. W. Nama, M. K. Kimb, S. W. Parka, et al., “Crack-healing behavior and bending strength of Si3N4 /SiC composite ceramics by SiO2 colloidal,” Mater. Sci. Eng. A, 471, 102 – 105 (2007).CrossRefGoogle Scholar
  25. 25.
    D.-C. Park, T. Yano, T. Iseki, and K. Urabe, “Effect of nitrate salts as sintering additives during the ball-milling process of silicon nitride powders,” J. Am. Ceram. Soc., 83(12), 2967 – 2973 (2000).CrossRefGoogle Scholar
  26. 26.
    N. S. Akhmetov, General and Inorganic Chemistry [in Russian], Vyssh. Shkola, Moscow (2006).Google Scholar
  27. 27.
    S. N. Perevislov, V. D. Chupov, S. S. Ordanyan, and V. V. Tomkovich, “Obtaining high-density materials of silicon carbide by the method of liquid-phase sintering in the system of components SiC–Al2O3–Y2O3–MgO,” Ogneup. Tekh. Keram., No. 4/5, 26 – 32 (2011).Google Scholar
  28. 28.
    M. Castillo-Rodríguez, A. Munoz, and A. Domínguez-Rodríguez, “Effect of atmosphere and sintering time on the microstructure and mechanical properties at high temperatures of α-SiC sintered with liquid phase Y2O3–Al2O3 ,” J. Europ. Ceram. Soc., 26(12), 2397 – 2405 (2006).CrossRefGoogle Scholar
  29. 29.
    S. N. Perevislov and D. D. Nesmelov, “Properties of SiC and Si3N4 based composite ceramic with nanosize component,” Steklo Keram., No. 7, 15 – 18 (2016); S. N. Perevislov and D. D. Nesmelov, “Properties of SiC and Si3N4 based composite ceramic with nanosize component,” Glass Ceram., 73(7 – 8), 249 – 252 (2016).Google Scholar
  30. 30.
    S. N. Perevislov, “Mechanism of liquid-phase sintering of silicon carbide and nitride with oxide activating additives,” Steklo Keram., No. 7, 34 – 38 (2013); S. N. Perevislov, “Mechanism of liquid-phase sintering of silicon carbide and nitride with oxide activating additives,” Glass Ceram., 70(7 – 8), 265 – 268 (2013).Google Scholar
  31. 31.
    S. N. Perevislov, A. S. Lysenkov, D. D. Titov, and M. V. Tomkovich, “Hot-pressed ceramic SiC–YAG materials,” Inorg. Mater., 53(2), 220 – 225 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. N. Perevislov
    • 1
    Email author
  • A. S. Lysenkov
    • 2
  • D. D. Titov
    • 3
  • M. V. Tomkovich
    • 3
  • K. A. Kim
    • 2
  • M. G. Frolova
    • 2
  • Yu. F. Kargin
    • 2
  • I. S. Mel’nikova
    • 4
  1. 1.I. V. Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.A. A. Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  3. 3.A. F. Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  4. 4.State Scientific-Research Institute of Civil AviationMoscowRussia

Personalised recommendations