Glass and Ceramics

, Volume 75, Issue 9–10, pp 377–382 | Cite as

Nanoporous Glass with Controlled Pore Size for High-Efficiency Synthesis of Oligonucleotides

  • G. Yu. Shakhgil’dyanEmail author
  • K. I. Piyanzina
  • A. A. Stepko
  • A. N. Natyrov
  • A. M. Mikhailov
  • V. I. Savinkov
  • V. N. Sigaev

The results of work on the development of powder nanoporous glass (NPG) with controlled pore size for solid-phase synthesis of oligonucleotides with heightened product yield are presented. NPG with a narrow pore-size distribution was obtained by varying the parameters of the heat and chemical treatment of sodium-borosilicate glasses. It was found that the functional charge of the material is equal to 72 μmol/g. It is shown that using the developed NPG in the synthesis of long-chain oligonucleotides increases the product yield more than seven-fold compared with the analogous material offered on the market.

Key words

nanoporous glass alkali-borosilicate glass glass with controlled pore size CPG synthesis of oligonucleotides 


This work was supported by the Ministry of Education and Science of the Russian Federation (contract No. 14.Z50.31.0009).


  1. 1.
    F. Rodrøguez-Reinoso and A. Sepèlveda-Escribano, Handbook of Surfaces and Interfaces of Materials, Elsevier, Amsterdam (2001).Google Scholar
  2. 2.
    E. J. Connoll, H. T. M. Pham, J. Groeneweg, et al., “Relative humidity sensors using porous SiC membranes and Al electrodes,” Sensors and Actuators B: Chemical, 100, 216 – 220 (2004).CrossRefGoogle Scholar
  3. 3.
    J. Jakubowicz, “Formation of porous TiOx biomaterials in H3PO4 electrolytes,” Electrochem. Commun., 10, 735 – 739 (2008).CrossRefGoogle Scholar
  4. 4.
    D. Mukherji, G. Pigozzi, F. Schmitz, et al., “Nano-structured materials produced from simple metallic alloys by phase separation,” Nanotechnology, 16, 2176 – 2187 (2005).CrossRefGoogle Scholar
  5. 5.
    M. M. Shults (ed.), Segregation Phenomena in Glasses [in Russian], Nauka, Leningrad (1974).Google Scholar
  6. 6.
    O. V. Mazurin, G. P. Roskova, V. I. Averyanov, and T. V. Antropova, Biphase Glasses: Structure, Properties, Applications [in Russian], Nauka, Leningrad (1991).Google Scholar
  7. 7.
    W. Haller, Porous Material and Method of Making the Same, Patent US3758284A (1973).Google Scholar
  8. 8.
    P. Levitz, G. Ehret, S. K. Sinha, and J. M. Drake, “Porous vycor glass: the microstructure as probed by electron microscopy, direct energy transfer, small-angle scattering, and molecular adsorption,” J. Chem. Phys., 95, 6151 (1991).CrossRefGoogle Scholar
  9. 9.
    C. Mazilu, E. Rotiu, L. Ionescu, et al., “Nanoporous glass in Na2O–B2O3–SiO2 oxidic system, for potential biomedical applications,” J. Optoelectron. Adv. Mater., 9(7), 2036 – 2040 (2007).Google Scholar
  10. 10.
    R. T. Pon, Solid-Phase Supports for Oligonucleotide Synthesis, Current Protocols in Nucleic Acid Chemistry,Wiley, Chichester (2001).Google Scholar
  11. 11.
    A. P. Guzaev and M. A. Manoharan, “Conformationally preorganized universal solid support for efficient oligonucleotide synthesis,” J. Am. Chem. Soc., 125(9), 2380 – 2381 (2003).CrossRefGoogle Scholar
  12. 12.
    P. S. Nelson, S. Muthini, M. Vierra, et al., “Rainbow universal CPG: A versatile solid support for oligonucleotide synthesis,” BioTechniques, 22, 752 – 756 (1997).CrossRefGoogle Scholar
  13. 13.
    N. Bian, S. Ramaswamy, N. Soice, et al., Media for Affinity Chromatography, Patent US772018B2 (2014).Google Scholar
  14. 14.
    S. Siu, C. Chia, Y. Mok, and P. Pattnaik, “Packing of large-scale chromatography columns with irregularly shaped glass based resins using a stop-flow method,” Biotechnol. Prog., 30, 1319 – 1325 (2014).CrossRefGoogle Scholar
  15. 15.
    CPG Product Info, LGC Biosearch Technologies; URL: (date of access: August 25, 2018).
  16. 16.
    Controlled Pore Glass (CPG), Sigma Aldrich URL: html?TablePage=16040627 (date of access: August 25, 2018).
  17. 17.
    O. V. Andreeva and I. E. Obyknovennaya, “Nanoporous matrices NPS-7 and NPS-17 — possibilities of use in an optical experiment,” Nanosistemy: Fiz., Khim., Matem., 1(1), 37 – 53 (2010).Google Scholar
  18. 18.
    R. T. Pon, “Solid-phase supports for oligonucleotide synthesis,” in: S. Agrawal (ed.), Protocols for Oligonucleotides and Analogs. Methods in Molecular Biology, Humana Press, NY(1993), Vol. 20.Google Scholar
  19. 19.
    B. I. Monogram, G. P. Roskova, and T. S. Tsekhomskaya, “Porous glasses: the process of formation, structure and some properties,” in: Physicochemistry of Silicates and Oxides [in Russian], Nauka, St. Petersburg (1998), pp. 199 – 216.Google Scholar
  20. 20.
    5-DMT-T-Suc-CPG: 1000 Å, LGC Biosearch Technologies; URL: (date of access, August 25, 2018).
  21. 21.
    M. A. Aleksashkina, B. I. Venzel, and L. G. Svatovskaya, “Porous glasses as a matrix for producing nanocomposites,” Fiz. Khim. Stekla, 31(3), 361 – 368 (2005).Google Scholar
  22. 22.
    V. I. Savinkov, V. N. Sigaev, N. V. Golubev, et al., “Borogermanate glasses with a high terbium oxide content,” J. Non-Cryst. Solids, 356, 1655 – 1659 (2010).CrossRefGoogle Scholar
  23. 23.
    M. A. Girsova, G. F. Golovina, L. N. Kurylenko, and T. V. Antropova, “Synthesis and study of bismuth-containing high-silica glass by the method of IR-spectroscopy,” Fiz. Khim. Stekla, 41(1), 127 – 132 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • G. Yu. Shakhgil’dyan
    • 1
    Email author
  • K. I. Piyanzina
    • 1
  • A. A. Stepko
    • 1
  • A. N. Natyrov
    • 2
  • A. M. Mikhailov
    • 1
  • V. I. Savinkov
    • 1
  • V. N. Sigaev
    • 1
  1. 1.D. I. Mendeleev University of Chemical Technology of RussiaMoscowRussia
  2. 2.Scientific and Industrial Firm Sintol, JSCMoscowRussia

Personalised recommendations