Advertisement

Thermophysical Properties of Silicon-Carbide-Based Ceramic Composite Materials Obtained by Spark Plasma Sintering (SPS)

  • Yu. V. Loshchinin
  • Yu. E. LebedevaEmail author
  • A. V. Slavin
SCIENCE FOR CERAMIC PRODUCTION
  • 4 Downloads

The factors influencing the thermal conductivity of SiC-based ceramic composite materials obtained by the spark plasma sintering technology with relative density 99% and B4C, AlN, Si3N4, Y2O3, Al2O3, and HfB2 as additives are examined. The thermophysical properties were determined in the temperature range 20 – 1300°C: specific heat, thermal diffusivity, and thermal conductivity of composites. The thermal diffusivity and specific heat were measured by the laser-spark method. The measurements of specific heat are supplemented by measurements performed with a DSC and adiabatic calorimeter. The thermal conductivity is calculated using data on the thermal diffusivity, specific heat, and density.

Key words

ceramic composite materials thermophysical properties specific heat thermal diffusivity thermal conductivity laser flash method adiabatic calorimeter differential scanning calorimetry (DSC) 

Notes

This work was performed as part of the implementation of the scientific directions No. 2 ‘Fundamentally oriented research, classification of materials, non-destructive monitoring’ and No. 14 ‘High-temperature ceramic, heat shielding, and ceramic like materials’ (‘Strategic directions of development of materials and their processing technologies in the period to 2030’ [1].

References

  1. 1.
    E. N. Kablov, “Innovative developments at FGUP “VIAM” SSC RF on the implementation of strategic directions for the development of materials and technologies for their processing to 2030,” Aviats. Mater. Tekhnol., No. 1(34), 3 – 33 (2015).Google Scholar
  2. 2.
    E. N. Kablov, “Materials for aerospace engineering,” Vse Mater., Éntsikloped. Sprav., No. 5, 7 – 27 (2007).Google Scholar
  3. 3.
    E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, et al., “Glass and ceramics based high-temperature composite materials for use in aviation technology,” Steklo Keram., No. 4, 7 – 11 (2012); E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, et al., “Glass and ceramics based high-temperature composite materials for use in aviation technology,” Glass Ceram., 69(3 – 4), 109 – 112 (2012).Google Scholar
  4. 4.
    Yu. E. Lebedeva, N. V. Popovich, and L. A. Orlova, “Protective high-temperature coatings for composite materials based on SiC,” Tr. VIAM: Elektron. Nauch.-Tekhn. Zh., No. 2, Art. 06 (2013).Google Scholar
  5. 5.
    A. S. Chainikova, L. A. Orlova, N. V. Popovich, et al., “Dispersion-hardened composites based on glass/glass-ceramic matrices: properties and applications (review),” Aviats. Mater. Tekhnol., No. 3, 45 – 54 (2014).Google Scholar
  6. 6.
    O. Yu. Sorokin, D. V. Grashchenkov, S. St. Solntsev, and S. A. Evdokimov, “Ceramic composite materials with high oxidative resistance for promising aircraft (review),” Tr. VIAM: Elektron. Nauch.-Tekhn. Zh., No. 6. Art. 08 (2014).Google Scholar
  7. 7.
    O. Yu. Sorokin, S. St. Solntsev, S. A. Evdokimov, and I. V. Osin, “The method of hybrid spark plasma sintering: Principle, possibilities, perspectives of application,” Tr. VIAM: Elektron. Nauch.-Tekhn. Zh., No. S6, 11 – 16 (2014).Google Scholar
  8. 8.
    D. V. Grashchenkov, O. Yu. Sorokin, Yu. E. Lebedeva, and M. L. Vaganova, “Particulars of sintering of HfB2-based refractory ceramics using hybrid spark plasma sintering,” Zh. Prikl. Khim., 88(3), 379 – 386 (2015).Google Scholar
  9. 9.
    D. V. Grashchenkov, M. L. Vaganova, Yu. E. Lebedeva, et al., “Prospects for using high-temperature ceramic and glass-ceramic materials and antioxidative coatings in aviation technology,” Vest. Kontserna VKO “Almaz-Antei,” No. 4, 64 – 70 (2016).Google Scholar
  10. 10.
    V. M. Samoilov, A. N. Vodovozov, V. K. Smirnov, and G. G. Aytsev, “Physico-mechanical and thermal properties of ceramics based on SiC,” Neorg. Mater., 47(8), 1004 – 1009 (2011).CrossRefGoogle Scholar
  11. 11.
    A. P. Garshin, V. M. Gropyanov, G. P. Zaitsev, and S. S. Semenov, Ceramics for Machine Engineering [in Russian], Nauchtekhlitizdat, Moscow (2003).Google Scholar
  12. 12.
    A. Paul, D. D. Jayaseelan, S. Venugopal, et. al., “UHTC composites for hypersonic applications,” Am. Ceram. Soc. Bull., 91(1), 22 – 28 (2012).Google Scholar
  13. 13.
    E. N. Pryamilova, Yu. B. Lyamin, and V. Z. Poilov, “Ultrahigh-temperature ceramic materials,” in: Abstracts of Reports at the 14th All-Russia Scientific and Technical Conference on Aerospace Engineering, High Technologies, and Innovations, Perm, November 20 – 21, 2013 [in Russian], Perm (2013), pp. 120 – 122.Google Scholar
  14. 14.
    Weiguo Li, Tianbao Cheng, Dingyu Li, and Daining Fang, “Numerical simulation for thermal shock resistance of ultrahigh temperature ceramics considering the effects of initial stress field,” Adv. Mater. Sci. Eng. (2011), pp. 1 – 7.Google Scholar
  15. 15.
    ASTM E 1461–92: Determination of the Thermal Diffusivity of Solids by the Laser Flash Method LFA [in Russian], (September 1, 2006).Google Scholar
  16. 16.
    M. E. Gurvich, L. N. Larikov, and A. I. Nozar, “Optimization of the scanning adiabatic calorimeter method,” Inzh. Fiz. Zh., 41(7), 129 – 135 (1981).Google Scholar
  17. 17.
    R. G. Munro, “Material properties of sintered α-SiC,” J. Phys. Chem. Ref. Dat., 26(5), 1195 – 1203 (1997).CrossRefGoogle Scholar
  18. 18.
    O. B. Kubashevskii, and S. Olkokk, Metallurgical Thermochemistry [Russian translation], Metallurgy, Moscow (1982).Google Scholar
  19. 19.
    T. G. B. Holland and R. Powell, “An internally consistent thermodynamic data set with uncertainties and correlations: 2. Data and results,” J. Metamorphic Geol., No. 3, 343 – 370 (1985).Google Scholar
  20. 20.
    V. E. Peletskii, “Investigation of the thermal conductivity of silicon nitride,” Teplofiz. Vys. Temp., 31(5), 727 – 730 (1993).Google Scholar
  21. 21.
    E. Ya. Litovskii and N. A. Puchkelevich, Handbook of the Thermophysical Properties of Refractories [in Russian], Metallurgiya, Moscow (1982).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu. V. Loshchinin
    • 1
  • Yu. E. Lebedeva
    • 1
    Email author
  • A. V. Slavin
    • 1
  1. 1.All-Russia Scientific-Research Institute of Aviation Materials (VIAM)MoscowRussia

Personalised recommendations