Glass and Ceramics

, Volume 75, Issue 7–8, pp 279–286 | Cite as

Calcium Phosphate Ceramic in the System Ca(PO3)2–Ca2P2O7 Based on Powder Mixtures Containing Calcium Hydrophosphate

  • T. V. SafronovaEmail author
  • V. I. Putlyaev
  • A. V. Knot’ko
  • V. K. Krut’ko
  • O. N. Musskaya
  • S. A. Ulasevich
  • N. A. Vorob’eva
  • V. D. Telitsin

Powder mixtures prepared by mechanical activation from synthetic hydrated acidic calcium phosphates Ca(H2PO4)2 · H2O and CaHPO4 · 2H2O were used to obtain resorbable ceramic in the system Ca (PO3)2–Ca2P2O7. The phase composition of the ceramic after firing in the interval 700 – 1000°C was represented by biocompatible and bioresorbable phases: calcium polyphosphate Ca(PO3)2, tromelite Ca4P6O19, and calcium pyrophosphate Ca2P2O7. The obtained materials can be used to fabricate resorbable implants for regenerative treatment of defects of bone tissue.

Key words

synthesis monocalcium phosphate monohydrate dicalcium phosphate dihydrate (brushite) dicalcium phosphate anhydride (monetite) powder calcium pyrophosphate tromelite calcium polyphosphate ceramic 


The equipment used in this work was acquired using the resources of the program of advancement of Moscow University. This research was supported by RFFI (grants Nos. 16-53-00154, 16-08-01172) and BRFFI (grant No. Kh16R-030).


  1. 1.
    T. V. Safronova and V. I. Putlyaev, “Powder systems for calcium phosphate ceramics,” Inorg. Mater., 53, 17 – 26 (2017).CrossRefGoogle Scholar
  2. 2.
    G. MacLennan and C. A. Beevers, “The crystal structure of monocalcium phosphate monohydrate, Ca(H2PO4)2 · H2O,” Acta Cryst., 9(2), 187 – 190 (1956).CrossRefGoogle Scholar
  3. 3.
    B. Boonchom and C. Danvirutai, “The morphology and thermal behavior of Calcium dihydrogen phosphate monohydrate (Ca(H2PO4)2 · H2O) obtained by a rapid precipitation route at ambient temperature in different media,” J. Optoelectron. Biomed. Mater., 1, 115 – 123 (2009).Google Scholar
  4. 4.
    L. E. Jackson and A. J. Wright, “A new synthetic route to calcium polyphosphates,” Key Eng. Mater., 284, 71 – 74 (2005).CrossRefGoogle Scholar
  5. 5.
    J. Trommer, M. Schneider, H. Worzala, and A. N. Fitch, “Structure determination of CaH2P2O7 from in situ powder diffraction data,” Mater. Sci. Forum, 321, 374 – 379 (2000).CrossRefGoogle Scholar
  6. 6.
    E. H. Brown, W. E. Brown, J. R. Lehr, et al., “Calcium ammonium pyrophosphates,” J. Phys. Chem., 62(3), 366 – 367 (1958).CrossRefGoogle Scholar
  7. 7.
    Y. V. Subbarao and R. Ellis, “Reaction products of polyphosphates and orthophosphates with soils and influence on uptake of phosphorus by plants,” Soil Sci. Soc. Am. J., 39(6), 1085 – 1088 (1975).CrossRefGoogle Scholar
  8. 8.
    E. H. Brown, J. R. Lehr, J. P. Smith, and A. W. Frazier, “Fertilizer Materials, Preparation and Characterization of Some Calcium Pyrophosphates,” J. Agricult. Food Chem., 11(3), 214 – 222 (1963).CrossRefGoogle Scholar
  9. 9.
    D. Zobel and N. Ba, “Untersuchungen zur Phosphitpyrolyse; Reaktionen beim Erhitzen von CaH2(HPO3)2 · H2O in Abwesenheit von Sauerstoff,” Z. Chem., 9(11), 433 (1969).CrossRefGoogle Scholar
  10. 10.
    T. V. Safronova, E. A. Mukhin, V. I. Putlyaev, et al., “Amorphous calcium phosphate powder synthesized from calcium acetate and polyphosphoric acid for bioceramics application,” Ceram. Int., 43, 1310 – 1317 (2017).CrossRefGoogle Scholar
  11. 11.
    H. A. Höppe, “Synthesis, crystal structure, and vibrational spectra of Ca4P6O19 (trömelite) – a catena – hexaphosphate,” Zeitschrift für Anorganische und Allgemeine Chemie, 631(6 – 7), 1272 – 1276 (2005).CrossRefGoogle Scholar
  12. 12.
    T. V. Safronova, V. I. Putlyaev, M. A. Shekhirev, and A. V. Kuznetsov, “Composite ceramic containing a bioresorbable phase,” Steklo Keram., No. 3, 31 – 35 (2007); T. V. Safronova, V. I. Putlyaev, M. A. Shekhirev, and A. V. Kuznetsov, “Composite ceramic containing a bioresorbable phase,” Glass Ceram., 64(3 – 4), 102 – 106 (2007).Google Scholar
  13. 13.
    T. V. Safronova, A. V. Kuznetsov, S. A. Korneychuk, et al., “Calcium phosphate powders synthesized from solutions with \( \left[{\mathrm{Ca}}^{2+}\right]/\left[{\mathrm{PO}}_4^{3-}\right] \) = 1 for bioresorbable ceramics,” Cent. Eur. J. Chem., 7(2), 184 – 191 (2009).Google Scholar
  14. 14.
    T. V. Safronova, S. A. Kurbatova, T. B. Shatalova, et al, “Calcium pyrophosphate powder synthesized from pyrophosphoric acid and calcium acetate for obtaining bioceramic,” Materialovedenie, 7(7), 41 – 48 (2016).Google Scholar
  15. 15.
    T. V. Safronova, V. I. Putlyaev, S. A. Kurbatova, et al., “Properties of amorphous calcium pyrophosphate powder synthesized with the use of ion-exchange for obtaining bioceramic,” Neorg. Mater., 51(11), 1269 – 1276 (2015).Google Scholar
  16. 16.
    T. V. Safronova, V. I. Putlayev, K. A. Bessonov, and V. K. Ivanov, “Ceramics based on calcium pyrophosphate nanopowders,” Proc. Appl. Ceram., 7(1), 9 – 14 (2013).CrossRefGoogle Scholar
  17. 17.
    Soorya Kabekkodu (ed.), ICDD (2010). PDF-4+ 2010 (Database), International Centre for Diffraction Data, Newtown Square, PA, USA(2010); URL:

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. V. Safronova
    • 1
    Email author
  • V. I. Putlyaev
    • 1
  • A. V. Knot’ko
    • 1
  • V. K. Krut’ko
    • 2
  • O. N. Musskaya
    • 2
  • S. A. Ulasevich
    • 2
  • N. A. Vorob’eva
    • 1
  • V. D. Telitsin
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of General and Inorganic ChemistryNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations