Glass and Ceramics

, Volume 75, Issue 5–6, pp 242–245 | Cite as

Annealing of Glassy and Ceramic Materials by Nanosecond Laser Pulses

  • A. F. KovalenkoEmail author

The effect of pulsed laser radiation on glassy and ceramic materials is examined within the scope of the dynamic uncoupled problem of thermoelasticity for a half-space. Analytical relations expressing the thermal strength criteria for materials are obtained with three temporal shapes of laser pulses of nanosecond duration, making it possible to determine non-destructive regimes of annealing. The impact of the temporal shape of a laser pulse on the annealing regimes of materials is shown. It is found that laser pulses with a steep leading edge and a protracted trailing edge give thermoelastic stress reduction in the material.

Key words

laser processing laser annealing dynamic problem of thermoelasticity glass ceramic criterion of thermal strength 


  1. 1.
    A. F. Kovalenko, “Nondestructive regimes of laser pulse annealing of glass and ceramic plates,” Steklo Keram., No. 7, 31 – 33 (2006); A. F. Kovalenko, “Nondestructive regimes of laser pulse annealing of glass and ceramic plates,” Glass Ceram., 63(7 – 8), 242 – 244 (2006).Google Scholar
  2. 2.
    A. F. Kovalenko, “Methods of pulsed laser annealing of nonmetallic plates,” Steklo Keram., No. 6, 31 – 33 (2016); A. F. Kovalenko, “Methods of pulsed laser annealing of nonmetallic plates,” Glass Ceram., 73(5 – 6), 227 – 230 (2016).Google Scholar
  3. 3.
    A. F. Kovalenko and A. A. Vorobiev, “Methods of determining nondestructive pulsed laser annealing modes for dielectric and semiconductor wafers,” Russian Microelectronics, 44(8), 590 – 594 (2015).CrossRefGoogle Scholar
  4. 4.
    A. F. Kovalenko, “Laser pulse annealing of glass plates with their partial coverage by radiation,” Glass Ceram., No. 2, 27 – 31 (2018).Google Scholar
  5. 5.
    D. H. Osborne, R. F. Haglund, F. Gonnela, and F. Garrido, “Laser-induced sign reversal of the nonlinear refractive index of Ag nanoclusters in soda-lime glass,” Appl. Opt., 66, 517 (1998).Google Scholar
  6. 6.
    A. L. Stepanov, “Laser annealing of dielectrics with metallic nanoparticles,” Opt. Spectrosk, 111(2), 245 – 249 (2011).CrossRefGoogle Scholar
  7. 7.
    A. L. Stepanov, V. F. Valeev, V. I. Nuzhdin, et al., “Excimer laser annealing of silicate glass with ion-ionised silver nanoparticles,” Zh. Tekh. Fiz., 79(10), 102 – 109 (2009).Google Scholar
  8. 8.
    A. A. Bakeev, A. P. Sobolev, and V. I. Yakovlev, “Investigation of thermoelastic stresses arising in the absorbing layer of a substance under the action of a laser pulse,” Prikl. Mekh. Tekhn. Fiz., No. 6, 92 – 98 (1982).Google Scholar
  9. 9.
    A. F. Kovalenko, “Experimental setup for studying the effect of laser pulse parameters on the destruction of nonmetallic materials,” Prib. Tekh. Eksp., No. 4, 119 – 124 (2004).Google Scholar
  10. 10.
    S. Myuller, “Lasers with Q-switching for surface processing,” Fotonika, No. 2, 26 – 28 (2011).Google Scholar
  11. 11.
    M. M. Makogon, N. V. Nedel’kin, V. I. Serdyukov, and V. M. Tarasov, “Garnet lasers with Q-switching by LiF:F2 crystals,” Opt. Atmosfery Okeana, 9(2), 239 – 242 (1996).Google Scholar
  12. 12.
    A. A. Zhupikov and A. M. Razhev, “KrF excimer laser based on the buffer gas He with energy 0.8 J and efficiency 2%,” Kvant. Elektron., No. 8, 687 – 689 (1998).Google Scholar
  13. 13.
    V. F. Losev, High-Power Gas Lasers [in Russian], Izd. Tomsk. Politekh. Universiteta, Tomsk (2009).Google Scholar
  14. 14.
    GOST 13659–78: Optical Glass, Colorless [in Russian], Izd. Standartov, Moscow (1985).Google Scholar
  15. 15.
    GOST 15130–79: Glass, Quartz, Optical [in Russian], Izd. Standartov, Moscow (1986).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dukhov All-Russia Scientific-Research Institute of AutomaticsMoscowRussia

Personalised recommendations