Advertisement

Phase space of static wormholes sustained by an isotropic perfect fluid

  • Stéphane FayEmail author
Research Article

Abstract

A phase space is built that allows to study, classify and compare easily large classes of static spherically symmetric wormholes solutions, sustained by an isotropic perfect fluid in General Relativity. We determine the possible locations of equilibrium points, throats and curvature singularities in this phase space. Throats locations show that the spatial variation of the gravitational redshift at the throat of a static spherically symmetric wormhole sustained by an isotropic perfect fluid is always diverging, generalising the result that there is no such wormhole with zero-tidal force. Several specific static spherically symmetric wormholes models are studied. A vanishing density model leads to an exact solution of the field equation allowing to test our dynamical system formalism. It also shows how to extend it to the description of static black holes. Hence, the trajectory of the Schwarzschild black hole is determined. The static spherically symmetric wormhole solutions of several usual isotropic dark energy (generalised Chaplygin gas, constant, linear and Chevallier–Polarski–Linder equations of state) and dark matter (Navarro–Frenk–White profile) models are considered. They show various behaviours far from the throat: singularities, spatial flatness, cyclic behaviours, etc. None of them is asymptotically Minkowski flat. This discards the natural formation of static spherically symmetric and isotropic wormholes from these dark fluids. Last we consider a toy model of an asymptotically Minkowski flat wormhole that is a counterexample to a recent theorem claiming that a static wormhole sustained by an isotropic fluid cannot be asymptotically flat on both sides of its throat.

Keywords

Wormhole Dynamical system Dark energy 

Notes

References

  1. 1.
    Kuhfittig, P.K.F.: New Horiz. Math. Phys. 1, 14–18 (2017)Google Scholar
  2. 2.
    Sushkov, S.V.: Phys. Rev. D 71, 043520 (2005)ADSGoogle Scholar
  3. 3.
    Lobo, F.S.N.: AIP Conf. Proc. 861, 936–943 (2006)ADSGoogle Scholar
  4. 4.
    Kuhfittig, P.K.F.: Acta Phys. Polinica B 47, num 5 (2016)Google Scholar
  5. 5.
    Wainwright, J., Ellis, G.F.R. (eds.): Cambridge University Press (1997).  https://doi.org/10.1017/CBO9780511524660 Google Scholar
  6. 6.
    Mignemi, S., Wiltshire, D.L.: CQG 6, 7 (1989)Google Scholar
  7. 7.
    Mignemi, S., Wiltshire, D.L.: Phys. Rev. D 46, 1475–1506 (1992)ADSMathSciNetGoogle Scholar
  8. 8.
    Poletti, S.J., Wiltshire, D.L.: Phys. Rev. D 50, 7260–7270 (1994)ADSMathSciNetGoogle Scholar
  9. 9.
    Ganguly, A., et al.: CQG 32, 10 (2015)Google Scholar
  10. 10.
    Cruz, M., et al.: CQG 34, 125014 (2017)ADSGoogle Scholar
  11. 11.
    Sussman, R.A.: CQG 25, 015012 (2008)Google Scholar
  12. 12.
    Montelongo, N., Zannias, T.: CQG 26(10), 105011 (2009)Google Scholar
  13. 13.
    Morris, M., Thorne, K.: Am. J. Phys. 56, 395–416 (1988)ADSGoogle Scholar
  14. 14.
    Bento, M.C., Bertolami, O., Sen, A.A.: Phys. Rev. D 66, 043507 (2002)ADSGoogle Scholar
  15. 15.
    Rahaman, F., Kalam, M., Chakraborty, S.: Acta Phys. Polon. B 40, 25–40 (2009)ADSMathSciNetGoogle Scholar
  16. 16.
    Huterer, D., Turner, M.S.: Phys. Rev. D 64, 123527 (2001)ADSGoogle Scholar
  17. 17.
    Weller, J., Albrecht, A.: Phys. Rev. D 65, 103512 (2002)ADSGoogle Scholar
  18. 18.
    Chevallier, M., Polarski, D.: Int. J. Mod. Phys. D 10, 213 (2001)ADSGoogle Scholar
  19. 19.
    Linder, E.V.: Phys. Rev. Lett. 90, 091301 (2003)ADSGoogle Scholar
  20. 20.
    Navarro, J.F., Frenk, C.S., White, S.D.M.: Astrophys. J. 462, 563–575 (1996)ADSGoogle Scholar
  21. 21.
    Lobo, F.S.N.: Phys. Rev. D 71, 084011 (2005)ADSMathSciNetGoogle Scholar
  22. 22.
    Chakraborty, S., Bandyopadhyay, T.: Int. J. Mod. Phys. D 18, 463–476 (2007)ADSGoogle Scholar
  23. 23.
    Cataldo, M., Liempi, L., Rodriguez, P.: Phys. Rev. D 91, 124039 (2015)ADSMathSciNetGoogle Scholar
  24. 24.
    Bronnikov, K.A., Kim, S.-W.: Phys. Rev. D 67, 064027 (2003)ADSMathSciNetGoogle Scholar
  25. 25.
    Kuhfittig, P.K.F.: Class. Quant. Gravity 23, 5853–5860 (2006)ADSGoogle Scholar
  26. 26.
    Lobo, F.S.N., Parsaei, F., Riazi, N.: Phys. Rev. D 87, 084030 (2013)ADSGoogle Scholar
  27. 27.
    Gorini, V., et al.: Phys. Rev. D 78, 064064 (2008)ADSGoogle Scholar
  28. 28.
    Rahaman, F., et al.: Phys. Lett. B633, 161–163 (2006)ADSGoogle Scholar
  29. 29.
    Kremer, G.M.: Phys. Rev. D 68, 123507 (2003)ADSGoogle Scholar
  30. 30.
    Ananda, K.N., Bruni, M.: Phys. Rev. D74, 023524 (2006)ADSGoogle Scholar
  31. 31.
    Cataldo, M., et al.: Phys. Lett. B 757, 130–135 (2016). arXiv:1604.04578 ADSGoogle Scholar
  32. 32.
    Uggla, C.: Spacetime singularities. In: Einstein Online Vol. 02, 1002 (2006)Google Scholar
  33. 33.
    Cataldo, M., Liempi, L., Rodríguez, P.: Eur. Phys. J. C 77, 748 (2017)ADSGoogle Scholar
  34. 34.
    Bronnikov, K.A., Baleevskikh, K.A., Skvortsova, M.V.: Phys. Rev. D 95, 124039 (2017)ADSMathSciNetGoogle Scholar
  35. 35.
    B. Dean, A. J. P, 67, 78 (1999)Google Scholar
  36. 36.
    Lobo, F.S.N.: Phys. Rev. D 73, 064028 (2006)ADSMathSciNetGoogle Scholar
  37. 37.
    Stark, A., Miller, C.J., Huterer, D.: Phys. Rev. D 96, 023543 (2017)ADSMathSciNetGoogle Scholar
  38. 38.
    Rudra, P., Ranjit, C., Kundu, S.: Mod. Phys. Lett. A 30(31), 1550151 (2015)ADSGoogle Scholar
  39. 39.
    Jassal, H.K., Bagla, J.S., Padmanabhan, T.: MNRAS 405, 4 (2010)Google Scholar
  40. 40.
    Tsutsui, R., et al.: MNRAS 394, 1 (2009)Google Scholar
  41. 41.
    Rahaman, F., et al.: Eur. Phys. J. C 74, 2750 (2014)ADSGoogle Scholar
  42. 42.
    Islam, S., Rahaman, F., Övgün, A. et al.:  https://doi.org/10.1139/cjp-2017-0864 arxiv:1806.01135 (2018)ADSGoogle Scholar
  43. 43.
    Rahaman, F., Shit, G.C., Sen, B., et al.: Astrophys. Space Sci. 361, 37 (2016)ADSGoogle Scholar
  44. 44.
    Bronnikov, K.A.: Acta Phys. Pol. B 4, 251–266 (1973)Google Scholar
  45. 45.
    Ellis, H.G.: J. Math. Phys. 14, 104–118 (1973)ADSGoogle Scholar
  46. 46.
    Lemos, J.P.S., Lobo, F.S.N., de Oliveira, S.Q.: Phys. Rev. D 68, 064004 (2003)ADSGoogle Scholar
  47. 47.
    Hossenfelder, S.: arXiv:1801.02176 (2018)
  48. 48.
    Nilsson, U.S., Uggla, C.: Ann. Phys. 286, 278–291 (2001)ADSGoogle Scholar
  49. 49.
    Nilsson, U.S., Uggla, C.: Ann. Phys. 286, 292–319 (2001)ADSGoogle Scholar
  50. 50.
    Heinzle, J.M., Rohr, N., Uggla, C.: Class. Quant. Gravity 20, 4567–4586 (2003) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Astronomy DepartmentPalais de la DécouverteParisFrance

Personalised recommendations