The Kerr–Newman–(anti-)de Sitter spacetime: Extremal configurations and electrogeodesics
- 85 Downloads
Abstract
We study motion of charged test particles, or electrogeodesics, in the Kerr–Newman–(anti-)de Sitter spacetime. We focus on the equatorial plane and the axis of symmetry where the analysis is considerably simpler. The electric charge opens up the possibility of new types of trajectories, particularly stationary points where the particle can remain indefinitely. It also influences the stability of the orbits, which can be interesting from the point of view of observations. We review the basic properties of the spacetime—the structure of its horizons, the extremal cases, the possibility of over-extreme rotation, regions admitting closed timelike curves, and the turnaround radius, among other.
Keywords
Kerr–Newman–(anti-)de Sitter Extreme horizons Electrogeodesics Effective potentialNotes
Acknowledgements
J.V. was supported by Charles University, Project GA UK 80918. M.Ž. acknowledges support by GACR 17-13525S.
References
- 1.Carter, B.: Black hole equilibrium states. In: DeWitt, B.S., DeWitt, C. (eds.) Black Holes (1972 Les Houches Lectures). Gordon and Breach, New York (1973)Google Scholar
- 2.Hagihara, Y.: Theory of the relativistic trajectories in a gravitational field of Schwarzschild. Jpn. J. Astron. Geophys. 8, 67 (1930)Google Scholar
- 3.Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968). https://doi.org/10.1103/PhysRev.174.1559 ADSCrossRefzbMATHGoogle Scholar
- 4.Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, New York (1983)zbMATHGoogle Scholar
- 5.Cebeci, H., Özdemir, N., Şentorun, S.: Motion of the charged test particles in Kerr–Newman–Taub-NUT spacetime and analytical solutions. Phys. Rev. D 93, 104031 (2016). https://doi.org/10.1103/PhysRevD.93.104031 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 6.Soroushfar, S., Saffari, R., Kazempour, S., Grunau, S., Kunz, J.: Detailed study of geodesics in the Kerr–Newman–(A)dS spacetime and the rotating charged black hole spacetime in \(f(R)\) gravity. Phys. Rev. D 94, 024052 (2016). https://doi.org/10.1103/PhysRevD.94.024052 ADSMathSciNetCrossRefGoogle Scholar
- 7.Hackmann, E., Xu, H.: Charged particle motion in Kerr–Newmann space-times. Phys. Rev. D 87(12), 124030 (2013). https://doi.org/10.1103/PhysRevD.87.124030 ADSCrossRefGoogle Scholar
- 8.Gibbons, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738–2751 (1977). https://doi.org/10.1103/PhysRevD.15.2738 ADSMathSciNetCrossRefGoogle Scholar
- 9.Griffiths, J.B., Podolský, J.: Exact Space-Times in Einstein’s General Relativity. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
- 10.Aghanim, N., et al.: Planck 2018 results. VI. Cosmological parameters. https://arxiv.org/pdf/1807.06209.pdf (2018). Accessed 17 June 2019
- 11.Lauer, T.R., et al.: The masses of nuclear black holes in luminous elliptical galaxies and implications for the space density of the most massive black holes. Astrophys. J. 662, 808–834 (2007). https://doi.org/10.1086/518223 ADSCrossRefGoogle Scholar
- 12.Veselý, J.: Charged particles in space-times with an electromagnetic field. Master’s thesis, Charles University, Prague. https://dspace.cuni.cz/bitstream/handle/20.500.11956/90577/DPTX_2015_1_11320_0_484776_0_170034.pdf (2017). Accessed 22 October 2018
- 13.Cardoso, V., Gualtieri, L.: Testing the black hole ‘no-hair’ hypothesis. Class. Quant. Grav. 33(17), 174001 (2016). https://doi.org/10.1088/0264-9381/33/17/174001 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 14.Nielsen, A.B.: On the distribution of stellar-sized black hole spins. J. Phys. Conf. Ser. 716(1), 012002 (2016). https://doi.org/10.1088/1742-6596/716/1/012002 CrossRefGoogle Scholar
- 15.Middleton, M.: Black hole spin: theory and observation, Chapter 3. In: Bambi, C. (ed.) Astrophysics of Black Holes: From Fundamental Aspects to Latest Developments, pp. 99–151. Springer, Berlin (2016)CrossRefGoogle Scholar
- 16.Gou, L., McClintock, J.E., Reid, M.J., Orosz, J.A., Steiner, J.F., Narayan, R., Xiang, J., Remillard, R.A., Arnaud, K.A., Davis, S.W.: The extreme spin of the black hole in Cygnus X-1. Astrophys. J. 742, 85 (2011). https://doi.org/10.1088/0004-637X/742/2/85 ADSCrossRefGoogle Scholar
- 17.Stuchlík, Z., Slaný, P.: Equatorial circular orbits in the Kerr–de Sitter spacetimes. Phys. Rev. D 69, 064001 (2004). https://doi.org/10.1103/PhysRevD.69.064001 ADSMathSciNetCrossRefGoogle Scholar
- 18.Gibbons, G.W., Shellard, E.P.S., Rankin, S.J.: The Future of Theoretical Physics and Cosmology: Celebrating Stephen Hawking’s Contributions to Physics. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
- 19.Monroe, H.: Are causality violations undesirable? Found. Phys. 38, 1065–1069 (2008). https://doi.org/10.1007/s10701-008-9254-9 ADSMathSciNetCrossRefGoogle Scholar
- 20.Andreka, H., Nemeti, I., Wuthrich, C.: A Twist in the geometry of rotating black holes: seeking the cause of acausality. Gen. Relativ. Gravit. 40, 1809–1823 (2008). https://doi.org/10.1007/s10714-007-0577-1 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 21.de Felice, F., Calvani, M.: Causality violation in the Kerr metric. Gen. Relativ. Gravit. 10, 335–342 (1979). https://doi.org/10.1007/BF00759491 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 22.de Felice, F., Nobili, L., Calvani, M.: Charged singularities: the causality violation. J. Phys. A 13, 3635–3641 (1980). https://doi.org/10.1088/0305-4470/13/12/012 ADSMathSciNetCrossRefGoogle Scholar
- 23.Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd edn. Addison-Wesley, Boston (2000)zbMATHGoogle Scholar
- 24.Hackmann, E., Lämmerzahl, C., Kagramanova, V., Kunz, J.: Analytical solution of the geodesic equation in Kerr–(anti) de Sitter space-times. Phys. Rev. D 81, 044020 (2010). https://doi.org/10.1103/PhysRevD.81.044020 ADSMathSciNetCrossRefGoogle Scholar
- 25.Luongo, O., Quevedo, H.: Characterizing repulsive gravity with curvature eigenvalues. Phys. Rev. D 90(8), 084032 (2014). https://doi.org/10.1103/PhysRevD.90.084032 ADSCrossRefGoogle Scholar
- 26.Boshkayev, K., Gasperin, E., Gutiérrez-Piñeres, A.C., Quevedo, H., Toktarbay, S.: Motion of test particles in the field of a naked singularity. Phys. Rev. D 93(2), 024024 (2016). https://doi.org/10.1103/PhysRevD.93.024024 ADSMathSciNetCrossRefGoogle Scholar
- 27.Stuchlík, Z., Hledík, S.: Equatorial photon motion in the Kerr–Newman spacetimes with a non-zero cosmological constant. Class. Quant. Grav. 17, 4541–4576 (2000). https://doi.org/10.1088/0264-9381/17/21/312 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 28.Stuchlík, Z., Bao, G., Ostgaard, E., Hledík, S.: Kerr–Newman–de Sitter black holes with a restricted repulsive barrier of equatorial photon motion. Phys. Rev. D 58, 084003 (1998). https://doi.org/10.1103/PhysRevD.58.084003 ADSMathSciNetCrossRefGoogle Scholar
- 29.Cunha, P.V.P., Herdeiro, C.A.R., Radu, E.: Fundamental photon orbits: black hole shadows and spacetime instabilities. Phys. Rev. D 96(2), 024039 (2017). https://doi.org/10.1103/PhysRevD.96.024039 ADSCrossRefGoogle Scholar
- 30.Hejda, F., Bičák, J.: Kinematic restrictions on particle collisions near extremal black holes: a unified picture. Phys. Rev. D 95(8), 084055 (2017). https://doi.org/10.1103/PhysRevD.95.084055 ADSMathSciNetCrossRefGoogle Scholar
- 31.De Felice, F., Calvani, M.: Orbital and vortical motion in the Kerr metric. Nuovo Cim. B 10, 447–458 (1972)ADSGoogle Scholar
- 32.Stuchlík, Z.: The motion of test particles in black-hole backgrounds with non-zero cosmological constant. Bull. Astron. Inst. Czech. 34, 129–149 (1983)ADSzbMATHGoogle Scholar
- 33.Bičák, J., Stuchlík, Z., Balek, V.: The motion of charged particles in the field of rotating charged black holes and naked singularities. Bull. Astron. Inst. Czech. 40, 65–92 (1989)ADSzbMATHGoogle Scholar
- 34.Cruz, N., Olivares, M., Villanueva, J.R.: The geodesic structure of the schwarzschild anti-de Sitter black hole. Class. Quant. Grav. 22, 1167–1190 (2005). https://doi.org/10.1088/0264-9381/22/6/016 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 35.Stuchlík, Z., Hledík, S.: Some properties of the Schwarzschild-de Sitter and Schwarzschild-anti-de Sitter spacetimes. Phys. Rev. D 60, 044006 (1999). https://doi.org/10.1103/PhysRevD.60.044006 ADSMathSciNetCrossRefGoogle Scholar
- 36.Faraoni, V., Lapierre-Léonard, M., Prain, A.: Turnaround radius in an accelerated universe with quasi-local mass. J. Cosmol. Astropart. Phys. 2015(10), 013–013 (2015). https://doi.org/10.1088/1475-7516/2015/10/013 MathSciNetCrossRefGoogle Scholar
- 37.Giusti, A., Faraoni, V.: Turnaround size of non-spherical structures. Phys. Dark Univ. 26, 100353 (2019). https://doi.org/10.1016/j.dark.2019.100353 CrossRefGoogle Scholar