Advertisement

Linearized Einstein’s equation around pure BTZ from entanglement thermodynamics

  • Partha PaulEmail author
  • Pratik Roy
Research Article
  • 26 Downloads

Abstract

It is known that the linearized Einstein’s equation around the pure AdS can be obtained from the constraint \( \Delta S = \Delta \langle H \rangle \), known as the first law of entanglement, on the boundary CFT. The corresponding dual state in the boundary CFT is the vacuum state around which the linear perturbation is taken. In this paper we revisit this question, in the context of \( AdS _3/ CFT _2 \), with the state of the boundary \( CFT _2\) as a thermal state. The corresponding dual geometry is a planar BTZ black hole. By considering the linearized perturbation around this black brane we show that Einstein’s equation follows from the first law of entanglement.

Keywords

Ads/CFT correspondence Entanglement thermodynamics BTZ black hole Linearised Einstein equations 

Notes

Acknowledgements

We are grateful to Shamik Banerjee for suggesting this problem and guiding us throughout the project. We are also thankful to him for carefully reading the draft and for correcting some parts of it. We are thankful to Amitabh Virmani and Jyotirmay Bhattacharya for helpful discussions on related matters. We would also like to acknowledge the hospitality at Chennai Mathematical Institute during the workshop ‘Student Talks in Trending Topics in Theory \((\hbox {ST}^4)\)’ where part of this work was done. PR is grateful to Debangshu Mukherjee for his generous help and multiple discussions on this work. PR is partially supported by a grant to CMI from the Infosys Foundation.

References

  1. 1.
    Cardy, J., Tonni, E.: Entanglement Hamiltonians in two-dimensional conformal field theory. J. Stat. Mech. 2016, 123103 (2016). [arXiv:1608.01283 [cond-mat.stat-mech]]MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)ADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161 (1973)ADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Jacobson, T.: Thermodynamics of Space-time: the Einstein equation of state. Phys. Rev. Lett. 75, 1260 (1995). [gr-qc/9504004]ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Padmanabhan, T.: Thermodynamical aspects of gravity: new insights. Rep. Prog. Phys. 73, 046901 (2010). [arXiv: 0911.5004 [gr-qc]]ADSCrossRefGoogle Scholar
  7. 7.
    Verlinde, E.P.: On the origin of gravity and the laws of newton. JHEP 1104, 29 (2011). arXiv:1001.0785 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200]ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., Oz, Y.: Large N field theories, string theory and gravity. Phys. Rep. 323, 183 (2000). [arXiv:hep-th/9905111]ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Lashkari, N., McDermott, M.B., Raamsdonk, M.V.: Gravitational dynamics from entanglement “thermodynamics”. JHEP 1404, 195 (2014). [arXiv:1308.3716 [hep-th]]ADSCrossRefGoogle Scholar
  11. 11.
    Faulkner, T., Guica, M., Hartman, T., Myers, R.C., Raamsdonk, M.V.: Gravitation from entanglement in holographic CFTs. JHEP 1403, 51 (2014). arXiv:1312.7856 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Blanco, D.D., Casini, H., Hung, L.Y., Myers, R.C.: Relative entropy and holography. JHEP 1308, 060 (2014). [arXiv:1305.3182 [hep-th]]ADSzbMATHGoogle Scholar
  13. 13.
    Speranza, A.J.: Entanglement entropy of excited states in conformal perturbation theory and the Einstein equation. JHEP 04, 105 (2016). [arXiv:1602.01380]ADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Mosk, B.: Holographic equivalence between the first law of entanglement entropy and the linearized gravitational equations. Phys. Rev. D 94, 126001 (2016). [arXiv:1608.06292]ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Czech, B., Lamprou, L., McCandlish, S., Mosk, B., Sully, J.: Equivalent equations of motion for gravity and entropy. JHEP 02, 004 (2017). [arXiv:1608.06282]ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Swingle, B., Raamsdonk, M.V.: “Universality of gravity from entanglement”. arXiv:1405.2933
  17. 17.
    Jacobson, T.: Entanglement equilibrium and the Einstein equation. Phys. Rev. Lett. 116(20), 201101 (2016). [arXiv:1505.04753]ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Ge, X.-H., Wang, B.: Quantum computational complexity, Einstein’s equations and accelerated expansion of the Universe. JCAP 1802(02), 047 (2018). arXiv:1708.06811 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Raamsdonk, M.V.: Lectures on gravity and entanglement. arXiv:1609.00026 [hep-th]
  20. 20.
    Raamsdonk, M.V.: “Comments on quantum gravity and entanglement”. arXiv:0907.2939
  21. 21.
    Raamsdonk, M.V.: Building up spacetime with quantum entanglement. Gen. Relativ. Gravit. 42, 2323 (2010). [arXiv:1005.3035]ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Bhattacharya, J., Nozaki, M., Takayanagi, T., Ugajin, T.: Thermodynamical property of entanglement entropy for excited states. Phys. Rev. Lett. 110(9), 091602 (2013). [arXiv:1212.1164]ADSCrossRefGoogle Scholar
  23. 23.
    Nozaki, M., Numasawa, T., Takayanagi, T.: Holographic local quenches and entanglement density. JHEP 1308, 102 (2013). [arXiv:1302.5703 [hep-th]]zbMATHGoogle Scholar
  24. 24.
    Nozaki, M., Numasawa, T., Prudenziati, A., Takayanagi, T.: Dynamics of entanglement entropy from Einstein equation. Phys. Rev. D 88(2), 026012 (2013). [arXiv:1304.7100 [hep-th]]ADSCrossRefGoogle Scholar
  25. 25.
    Allahbakhshi, D., Alishahiha, M., Naseh, A.: Entanglement thermodynamics. JHEP 1308, 102 (2013). [arXiv: 1305.2728 [hep-th]]ADSMathSciNetzbMATHGoogle Scholar
  26. 26.
    Wong, G., Klich, I., Pando Zayas, L.A., Vaman, D.: Entanglement temperature and entanglement entropy of excited states. JHEP 1312, 020 (2013). [arXiv:1305.3291 [hep-th]]ADSCrossRefGoogle Scholar
  27. 27.
    Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006). [arXiv:hep-th/0603001]ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Hubeny, V.E., Rangamani, M., Takayanagi, T.: A covariant holographic entanglement entropy proposal. JHEP 07, 062 (2007). [arXiv:0705.0016 [hep-th]]ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Bakhmatov, I., Deger, N.S., Gutowski, J., Colgáin, E.Ó., Yavartanoo, H.: Calibrated entanglement entropy. JHEP 07, 117 (2017). [arXiv:1705.08319 [hep-th]]ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Casini, H., Huerta, M., Myers, R.C.: Towards a derivation of holographic entanglement entropy. JHEP 1105, 036 (2016). arXiv:1102.0440 [hep-th]ADSzbMATHGoogle Scholar
  31. 31.
    Myers, R.C.: Stress tensors and Casimir energies in the AdS/CFT correspondence. Phys. Rev. D 60, 046002 (1999). [arXiv:hep-th/9903203]ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Skenderis, K.: “Lecture notes on holographic renormalization”. [arXiv:hep-th/0209067]
  33. 33.
    de Haro, S., Skenderis, K., Solodukhin, S.N.: Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence. Commun. Math. Phys. 217, 595 (2001). [arXiv:hep-th/0002230]ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Erdmenger, J., Osborn, H.: Conserved currents and the energy momentum tensor in conformally invariant theories for general dimensions. Nucl. Phys. B 483, 431 (1997). [arXiv:hep-th/9605009]ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Balasubramanian, V., kraus, P.: A stress tensor for anti-de Sitter gravity. Commun. Math. Phys. 208, 413–428 (1999). [arXiv:hep-th/9902121]ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Skenderis, K.: Asymptotically anti-de Sitter spacetimes and their stress energy tensor. Int. J. Mod. Phys. A 16, 740–749 (2001). [arXiv:hep-th/0010138]ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Vedral, V.: Introduction to Quantum Information Science. Oxford University Press, New York (2006)CrossRefGoogle Scholar
  38. 38.
    Sárosi, G., Ugajin, T.: Relative entropy of excited states in two dimensional conformal field theories. JHEP 1607, 114 (2016). arXiv:1603.03057 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Sheikh-Jabbari, M.M., Yavartanoo, H.: Excitation entanglement entropy in 2D conformal field theories. Phys. Rev. D 94, 126006 (2016). [arXiv:1605.00341 [hep-th]]ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Hartman, T., Afkhami-Jeddi, N.: Speed limits for entanglement. arXiv:1512.02695 [hep-th]
  41. 41.
    Ba\(\tilde{{n}}\)ados, M., Teitelboim, C., Zanelli, J.: The black hole in three dimensional spacetime. Phys. Rev. Lett. 69, 1849–1851 (1992). arXiv:hep-th/9204099 ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Kanitscheider, I., Skenderis, K.: Universal hydrodynamics of non-conformal branes. JHEP 04, 062 (2009). arXiv:0901.1487 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Bhattacharya, J., Takayanagi, T.: Entropic counterpart of perturbative Einstein equation. JHEP 1310, 219 (2013). [arXiv:1308.3792 [hep-th]]ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Faulkner, T., Haehl, F.M., Hijano, E., Parrikar, O., Rabideau, C., Raamsdonk, M.V.: Nonlinear gravity from entanglement in conformal field theories. JHEP 08, 057 (2017). arXiv:1705.03026 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Blanco, D., Leston, M., Pérez-Nadal, G.: Gravity from entanglement for boundary subregions. arXiv:1803.01874 [hep-th]

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of PhysicsBhubaneshwarIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia
  3. 3.Chennai Mathematical InstituteSiruseriIndia

Personalised recommendations