Republication of: On the Newtonian limit of Einstein’s theory of gravitation

  • Jürgen EhlersEmail author
Golden Oldie


This paper has been selected by the Editors of General Relativity and Gravitation for re-publication in the Golden Oldies series because it introduced Frame Theory–a theoretical framework enabling a unified treatment of General Relativity and classical Newtonian gravitation. This in particular has applications whenever a Newtonian model is used to study a gravitating system, for example in cosmology. The accompanying editorial note by Thomas Buchert and Thomas Mädler discusses Frame Theory’s value and its impact on later developments. The original is in German and not in a readily available journal: it is presented here in English. This is the fifth Golden Oldie of which Jürgen Ehlers was a co-author or author (not to mention the several for which he contributed an editorial note): it appears in what would have been his 90th year.


Jürgen Ehlers Newton-Cartan Theory General Relativity Frame Theory Limits of Spacetimes 



  1. 1.
    Heisenberg, W.: Der Teil und das Ganze, 2nd edn. Deutscher Taschenbuchverlag GmbH, München (1975). (See in particular Chapter 8) Google Scholar
  2. 2.
    Ludwig, G.: Einführung in die Grundlagen der Theoretischen Physik, Band 1: Raum, Zeit, Mechanik. Bertelsmann Universitätsverlag, Düsseldorf (1974). (See in particular Chapter III) Google Scholar
  3. 3.
    Ludwig, G.: Die Grundstrukturen einer physikalischen Theorie. Springer, Berlin (1978)CrossRefGoogle Scholar
  4. 4.
    Kuhn, T.S.: The Structure of Scientific Revolutions, 2nd edn. Chicago, 1970. in German, Frankfurt a. M. 1967Google Scholar
  5. 5.
    Feyerabend, P.K.: Contribution in Criticism and the Growth of Knowledge, Lakatos,I., Musgrave, A. (eds) Cambridge University Press, pp. 197–230 (1970)Google Scholar
  6. 6.
    Shapiro, J.J.: Chapter 12 in General Relativity and Gravitation, Held, A. (ed), vol. 2. Plenum Press, New York (1980)Google Scholar
  7. 7.
    Will, C.M.: Chapter 2 in General Relativity. An Einstein Centenary Survey. Hawking, S.W., Israel, W. (eds) Cambridge University Press (1979)Google Scholar
  8. 8.
    Ehlers, J.: Ann. N. Y. Acad. Sci. 336, 279 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    Einstein, A.: Ann. Phys. 49, 769 (1916)CrossRefGoogle Scholar
  10. 10.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)CrossRefGoogle Scholar
  11. 11.
    Sachs, R.K., Wu, H.: General Relativity for Mathematicians. Springer, New York (1977)CrossRefGoogle Scholar
  12. 12.
    Weyl, H.: Raum, Zeit, Materie, 5th edn. Springer, Berlin (1923). (See in particular §20) CrossRefGoogle Scholar
  13. 13.
    Cartan, É.: Ann. Ecole Norm. 40, 325 (1923);41, 1 (1924); reprint in Œuvres Complètes, Gauthier-Villars, Paris 1955, Bd III/1, p. 659 and 799Google Scholar
  14. 14.
    Friedrichs, K.: Math. Ann. 98, 566 (1927)CrossRefGoogle Scholar
  15. 15.
    Trautman, A.: C. R. Acad. Sci. 257, 617 (1963)Google Scholar
  16. 16.
    Havas, P.: Rev. Mod. Phys. 36, 938 (1964)ADSCrossRefGoogle Scholar
  17. 17.
    Dombrowski, H.D., Horneffer, K.: Math. Z. 86, 291 (1964)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Künzle, H.P.: Ann. Inst. Henri Poincaré 42, 337 (1972)Google Scholar
  19. 19.
    Dixon, W.G.: Commun. Math. Phys. 45, 221 (1975)CrossRefGoogle Scholar
  20. 20.
    Segal, I.E.: Duke Math. J. 18, 221 (1951)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Inonu, E., Wigner, E.P.: Proc. Natl. Acad. Sci. U.S.A. 39, 501 (1953)ADSCrossRefGoogle Scholar
  22. 22.
    Hermann, R.: Lie Groups for Physicists. Benjamin Inc., New York (1966). (See in particular Chapter 11) zbMATHGoogle Scholar
  23. 23.
    Dautcourt, G.: Acta. Phys. Polon. 65, 637 (1964)Google Scholar
  24. 24.
    Künzle, H.P.: Gen. Relativ. Gravit. 7, 445 (1976)ADSCrossRefGoogle Scholar
  25. 25.
    Geroch, R.P.: Commun. Math. Phys. 13, 180 (1969)ADSCrossRefGoogle Scholar
  26. 26.
    Holland, G.: Dissertation Universität Hamburg (1965) (unpublished)Google Scholar
  27. 27.
    Ehlers, J.: p. 71 in The Physicist’s Conception of Nature. Mehra, J. (eds). Reidel Publ. Company, Dordrecht (Holland) (1973)Google Scholar
  28. 28.
    Newman, E.T., Tod, K.P.: Chapter 1 in General Relativity and Gravitation, vol. 2, Held, A. (ed). Plenum Press, New York (1980)Google Scholar
  29. 29.
    Ashtekar, A.: Chapter 2 in General Relativity and Gravitation, vol. 2, Held, A. (ed). Plenum Press, New York (1980)Google Scholar
  30. 30.
    Schmidt, B.G.: Contribution in Isolated Gravitating Systems in General Relativity. Ehlers, J. (ed). North-Holland Publ. Comp, Amsterdam, New York, Oxford (1979). (See in particular p. 33) Google Scholar
  31. 31.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 2. Interscience Publications, New York (1962)zbMATHGoogle Scholar
  32. 32.
    Trautman, A.: Contribution in Perspectives in Geometry and Relativity, Hoffman, B. (ed). Indiana University Press, Bloomington (1966)Google Scholar
  33. 33.
    Kramer, D., Stephani, H., MacCallum, M., Herlt, E., Schmutzer, E. (eds.): Exact Solutions of Einstein’s Field Equations. VEB Deutscher Verlag der Wissenschaften, Berlin (1980)zbMATHGoogle Scholar
  34. 34.
    Møller, C.: Theory of Relativity. Clarendon Press, Oxford (1952)zbMATHGoogle Scholar
  35. 35.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman and Comp, San Francisco (1973)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Max Planck Institute for Physics and AstrophysicsMunichGermany

Personalised recommendations