Advertisement

Phenomenologically viable gravitational theory based on a preferred foliation without extra modes

  • Jorge BellorínEmail author
Research Article

Abstract

We present a gravitational field theory that implements Hořava’s proposal of foliation-preserving-diffeomorphisms symmetry and higher spatial curvature directly in the canonical formalism. Due to the higher spatial derivative the theory is potentially renormalizable. Since this gauge symmetry is natural in the canonical formalism, we do not require a Lagrangian of second-order in time derivatives to begin with. We define the nonzero part of the Hamiltonian and the constraints motivated by the kinetic-conformal version of the nonprojectable Hořava theory. The resulting theory is an extension of the latter, in the sense that it admits more solutions. Among the additional solutions there are homogeneous and isotropic configurations governed by the Friedmann equations. The theory has the same number of propagating degrees of freedom of general relativity. At the linearized level it reproduces the tensorial gravitational waves of general relativity. We discuss how observational bounds can be satisfied.

Keywords

Horava gravity Modifications to general relativity Lorentz violation 

Notes

References

  1. 1.
    Hořava, P.: Membranes at quantum criticality. JHEP 0903, 020 (2009). arXiv:0812.4287 [hep-th]ADSMathSciNetGoogle Scholar
  2. 2.
    Hořava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009). arXiv:0901.3775 [hep-th]ADSMathSciNetGoogle Scholar
  3. 3.
    Stelle, K.S.: Renormalization of higher derivative quantum gravity. Phys. Rev. D 16, 953 (1977)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bellorín, J., Restuccia, A., Sotomayor, A.: A consistent Hořava gravity without extra modes and equivalent to general relativity at the linearized level. Phys. Rev. D 87, 084020 (2013). arXiv:1302.1357 [hep-th]ADSCrossRefGoogle Scholar
  5. 5.
    Bellorín, J., Droguett, B.: Dynamics of the anisotropic conformal Hořava theory versus its kinetic-conformal formulation. Phys. Rev. D 98, 086008 (2018). arXiv:1807.01293 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Abbott, B.P., et al.: [LIGO Scientific and Virgo Collaborations], GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017). arXiv:1709.09660 [gr-qc]ADSCrossRefGoogle Scholar
  7. 7.
    Abbott, B.P., et al.: [LIGO Scientific and Virgo Collaborations]: Tests of general relativity with GW170817. Phys. Rev. Lett. 123, 011102 (2019). arXiv:1811.00364 [gr-qc]ADSCrossRefGoogle Scholar
  8. 8.
    Hořava, P., Melby-Thompson, C.M.: General covariance in quantum gravity at a Lifshitz point. Phys. Rev. D 82, 064027 (2010). arXiv:1007.2410 [hep-th]ADSCrossRefGoogle Scholar
  9. 9.
    Blas, D., Pujolàs, O., Sibiryakov, S.: Consistent extension of Hořava gravity. Phys. Rev. Lett. 104, 181302 (2010). arXiv:0909.3525 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    There is still open the possibility of having more configurations, see Bellorín, J., Restuccia, A.: On the space of solutions of the Hořava theory at the kinetic-conformal point. Gen. Relativ. Gravit. 49, 132 (2017). arXiv:1705.10161 [hep-th]
  11. 11.
    Bellorín, J., Restuccia, A.: Einstein’s quadrupole formula from the kinetic-conformal Hořava theory. Int. J. Mod. Phys. D 27, 1750174 (2017). arXiv:1612.04414 [gr-qc]ADSCrossRefGoogle Scholar
  12. 12.
    Barvinsky, A.O., Blas, D., Herrero-Valea, M., Sibiryakov, S.M., Steinwachs, C.F.: Renormalization of Hořava gravity. Phys. Rev. D 93, 064022 (2016). arXiv:1512.02250 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Kluson, J.: Note about Hamiltonian formalism of healthy extended Horava–Lifshitz gravity. JHEP 1007, 038 (2010). arXiv:1004.3428 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Donnelly, W., Jacobson, T.: Hamiltonian structure of Horava gravity. Phys. Rev. D 84, 104019 (2011). arXiv:1106.2131 [hep-th]ADSCrossRefGoogle Scholar
  15. 15.
    Bellorín, J., Restuccia, A.: Consistency of the Hamiltonian formulation of the lowest-order effective action of the complete Hořava theory. Phys. Rev. D 84, 104037 (2011). arXiv:1106.5766 [hep-th]ADSCrossRefGoogle Scholar
  16. 16.
    Regge, T., Teitelboim, C.: Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys. 88, 286 (1974)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    DeWitt, B.S.: Quantum theory of gravity. 1. The canonical theory. Phys. Rev. 160, 1113 (1967)ADSCrossRefGoogle Scholar
  18. 18.
    Bellorín, J., Restuccia, A.: On the consistency of the Horava theory. Int. J. Mod. Phys. D 21, 1250029 (2012). arXiv:1004.0055 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Arnowitt, R.L., Deser, S., Misner, C.W.: The dynamics of general relativity. Gen. Relativ. Gravit. 40, 1997 (2008). arXiv:gr-qc/0405109 [gr-qc]ADSCrossRefGoogle Scholar
  20. 20.
    Carroll, S.M., Lim, E.A.: Lorentz-violating vector fields slow the universe down. Phys. Rev. D 70, 123525 (2004). arXiv:hep-th/0407149 [hep-th]ADSCrossRefGoogle Scholar
  21. 21.
    Abbott, B.P., et al.: [LIGO Scientific and Virgo Collaborations], GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017). arXiv:1710.05832 [gr-qc]ADSCrossRefGoogle Scholar
  22. 22.
    Abbott, B.P., et al.: [LIGO Scientific and Virgo and Fermi-GBM and INTEGRAL Collaborations], Gravitational waves and gamma-rays from a binary neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. 848, L13 (2017). arXiv:1710.05834 [astro-ph.HE]ADSCrossRefGoogle Scholar
  23. 23.
    Blas, D., Sanctuary, H.: Gravitational radiation in Hořava gravity. Phys. Rev. D 84, 064004 (2011). arXiv:1105.5149 [gr-qc]ADSCrossRefGoogle Scholar
  24. 24.
    Jacobson, T., Mattingly, D.: Gravity with a dynamical preferred frame. Phys. Rev. D 64, 024028 (2001). arXiv:gr-qc/0007031 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Blas, D., Pujolàs, O., Sibiryakov, S.: Comment on ‘Strong coupling in extended Hořava–Lifshitz gravity’. Phys. Lett. B 688, 350 (2010). arXiv:0912.0550 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Jacobson, T.: Extended Hořava gravity and Einstein-aether theory. Phys. Rev. D 81, 101502 (2010). [Erratum-ibid. D 82 129901 (2010)]. arXiv:1001.4823 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    The PPN coefficients for the unrestricted Einstein-aether theory were obtained in Foster, B.Z., Jacobson, T.: Post-Newtonian parameters and constraints on Einstein-aether theory. Phys. Rev. D 73, 064015 (2006). arXiv:gr-qc/0509083 [gr-qc]
  28. 28.
    Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Rel. 17, 4 (2014). arXiv:1403.7377 [gr-qc]CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversidad de AntofagastaAntofagastaChile

Personalised recommendations