Advertisement

A Penrose-type inequality with angular momentum and charge for axisymmetric initial data

  • Marcus KhuriEmail author
  • Benjamin Sokolowsky
  • Gilbert Weinstein
Research Article
  • 9 Downloads

Abstract

A lower bound for the ADM mass is established in terms of angular momentum, charge, and horizon area in the context of maximal, axisymmetric initial data for the Einstein–Maxwell equations which satisfy the weak energy condition. If, on the horizon, the given data agree to a certain extent with the associated model Kerr–Newman data, then the inequality reduces to the conjectured Penrose inequality with angular momentum and charge. In addition, a rigidity statement is also proven whereby equality is achieved if and only if the data set arises from the canonical slice of a Kerr–Newman spacetime.

Keywords

Penrose inequality Angular momentum Axisymmetry Weyl coordinates Harmonic maps 

Notes

References

  1. 1.
    Anglada, P.: Penrose-like inequality with angular momentum for minimal surfaces. Class. Quantum Gravity 35, 045018 (2018). arXiv:1708.04646 ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Anglada, P.: Penrose-like inequality with angular momentum for general horizons. (2018) (preprint). arXiv:1810.11321
  3. 3.
    Bekenstein, J.: A universal upper bound on the entropy to energy ratio for bounded systems. Phys. Rev. D 23, 287 (1981)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bray, H.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59, 177–267 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brill, D.: On the positive definite mass of the Bondi–Weber–Wheeler time-symmetric gravitational waves. Ann. Phys. 7, 466–483 (1959)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Chruściel, P.: Mass and angular-momentum inequalities for axi-symmetric initial data sets. I. Positivity of mass. Ann. Phys. 323, 2566–2590 (2008). arXiv:0710.3680 ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Chruściel, P., Costa, J.: Mass, angular-momentum and charge inequalities for axisymmetric initial data. Class. Quantum Gravity 26(23), 235013 (2009). arXiv:0909.5625 ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Chruściel, P., Li, Y., Weinstein, G.: Mass and angular-momentum inequalities for axi-symmetric initial data sets. II. Angular momentum. Ann. Phys. 323, 2591–2613 (2008). arXiv:0712.4064 ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Chruściel, P., Nguyen, L.: A lower bound for the mass of axisymmetric connected black hole data sets. Class. Quantum Gravity 28, 125001 (2011). arXiv:1102.1175 ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Costa, J.: Proof of a Dain inequality with charge. J. Phys. A 43(28), 285202 (2010). arXiv:0912.0838 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dain, S.: Proof of the angular momentum-mass inequality for axisymmetric black hole. J. Differ. Geom. 79, 33–67 (2008). arXiv:gr-qc/0606105 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dain, S.: Geometric inequalities for axially symmetric black holes. Class. Quantum Gravity 29, 073001 (2012). arXiv:1111.3615 ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Dain, S., Gabach-Clement, M.: Geometrical inequalities bounding angular momentum and charges in general relativity. Living Rev. Relativ. (2018).  https://doi.org/10.1007/s41114-018-0014-7 CrossRefGoogle Scholar
  14. 14.
    Dain, S., Khuri, M., Weinstein, G., Yamada, S.: Lower bounds for the area of black holes in terms of mass, charge, and angular momentum. Phys. Rev. D 88, 024048 (2013). arXiv:1306.4739
  15. 15.
    Gabach-Clement, M., Jaramillo, J., Reiris, M.: Proof of the area-angular momentum-charge inequality for axisymmetric black holes. Class. Quantum Gravity 30, 065017 (2012). arXiv:1207.6761 ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Gibbons, G., Holzegel, G.: The positive mass and isoperimetric inequalities for axisymmetric black holes in four and five dimensions. Class. Quantum Gravity 23, 6459–6478 (2006). arXiv:gr-qc/0606116 ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59, 353–437 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jaracz, J., Khuri, M.: Bekenstein bounds, Penrose inequalities, and black hole formation. Phys. Rev. D 97, 124026 (2018). arXiv:1802.04438
  19. 19.
    Khuri, M., Weinstein, G.: The positive mass theorem for multiple rotating charged black holes. Calc. Var. Partial Differ. Equ. 55(2), 1–29 (2016). arXiv.1502.06290v2
  20. 20.
    Khuri, M., Weinstein, G., Yamada, S.: Extensions of the charged Riemannian Penrose inequality. Class. Quantum Gravity 32, 035019 (2015). arXiv:1410.5027 ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Khuri, M., Weinstein, G., Yamada, S.: Proof of the Riemannian Penrose inequality with charge for multiple black holes. J. Differ. Geom. 106, 451–498 (2017). arXiv:1409.3271 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mars, M.: Present status of the Penrose inequality. Class. Quantum Gravity 26(19), 193001 (2009). arXiv:0906.5566 ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Penrose, R.: Naked singularities. Ann. N. Y. Acad. Sci. 224, 125–134 (1973)ADSCrossRefGoogle Scholar
  24. 24.
    Schoen, R., Zhou, X.: Convexity of reduced energy and mass angular momentum inequalities. Ann. Henri Poincaré 14, 1747–1773 (2013). arXiv:1209.0019 ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Stephani, H., Kramer, D., Maccallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions to Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  26. 26.
    Weinstein, G., Yamada, S.: On a Penrose inequality with charge. Commun. Math. Phys. 257(3), 703–723 (2005). arXiv:math/0405602 ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Marcus Khuri
    • 1
    Email author
  • Benjamin Sokolowsky
    • 1
  • Gilbert Weinstein
    • 2
  1. 1.Department of MathematicsStony Brook UniversityStony BrookUSA
  2. 2.Department of Physics and Department of MathematicsAriel UniversityArielIsrael

Personalised recommendations