Advertisement

Analysis of general relativistic hydrodynamic cosmological models with stability factor in theories of gravitation

  • S. H. ShekhEmail author
  • V. R. Chirde
Research Article
  • 14 Downloads

Abstract

In the present paper, we have analyzed the dynamical properties of Einstein’s field equations in cosmology and in the vicinity of Plane symmetric cosmological model. The paper consists of main three parts in Part-I, we investigate the piece of Plane symmetric cosmological model in General Theory of Relativity with Hydrodynamic source. Part-II and Part-III consist the same source and cosmological model in f(R) and f(T) theory of gravity respectively. It is observed that Relativistic Hydrodynamic model in General Theory of Relativity and f(T) gravity is unstable while the model in f(R) gravity is stable. Also, Relativistic Hydrodynamic model in General Theory of Relativity is fully occupied with Quintessence dark energy fluid whereas in f(R) gravity the model shows both matter and dark energy dominated era and remains present in matter dominated era while in f(R) gravity initially it shows standard \( \Lambda \)-Cold Dark Matter model and with the expansion it is fully occupied with quintessence dark energy fluid. Some physical and kinematical properties of the models are also discussed.

Keywords

Cosmological model Hydrodynamics Theories of gravitation Cosmology 

Notes

References

  1. 1.
    Baojiu, L., Sotiriou, T., Barrow, J.: f(T) Gravity and local lorentz invariance. Phys. Rev. D 83, 064035 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Baojiu, L., Sotiriou, T., Barrow, J.: Generalizations of teleparallel gravity and local Lorentz symmetry. Phys. Rev. D 83, 104030 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Berman, M.S., Gomide, F.M.: Cosmological models with constant deceleration parameter. Gen. Relativ. Gravit. 20(2), 191–198 (1988)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bhoyar, S.R., Chirde, V.R., Shekh, S.H.: Dark energy dominated Bianchi type VI0 Universe with the hybrid expansion law in f(R, T) gravity. Prespacetime J. 8(9), 1101–1112 (2017)Google Scholar
  5. 5.
    Bhoyar, S.R., Chirde, V.R., Shekh, S.H.: Physical aspects of Bianchi type space–time with quadratic equation of state in f(R) gravity. Prespacetime Journal 7(3), 456–466 (2016)Google Scholar
  6. 6.
    Bhoyar, S.R., Chirde, V.R., Shekh, S.H.: Stability of accelerating universe with linear equation of state in f(T) gravity using hybrid expansion law. Astrophysics (2017).  https://doi.org/10.1007/s10511-017-9480-y CrossRefGoogle Scholar
  7. 7.
    Chirde, V.R., Shekh, S.H.: Anisotropic background for one-dimensional cosmic string in f(T) gravity. Afr. Rev. Phys. 10, 475–484 (2015)Google Scholar
  8. 8.
    Chirde, V.R., Shekh, S.H.: Barotropic bulk viscous FRW cosmological model in teleparallel gravity. Bulg. J. Phys. 41, 258–273 (2014)Google Scholar
  9. 9.
    Chirde, V.R., Shekh, S.H.: Cosmological models with magnetized anisotropic dark energy in lyra geometry. Int. J. Adv. Res. 2(6), 1103–1114 (2014)Google Scholar
  10. 10.
    Chirde, V.R., Shekh, S.H.: Dark energy cosmological model in a modified theory of gravity. Astrophysics 58(1), 121–133 (2015).  https://doi.org/10.1007/s10511-015-9369-6 CrossRefGoogle Scholar
  11. 11.
    Chirde, V.R., Shekh, S.H.: Interacting two-fluid viscous dark energy models in self creation cosmology. Afr. Rev. Phys. 9, 399–409 (2014)Google Scholar
  12. 12.
    Chirde, V.R., Shekh, S.H.: LRS Bianchi type-I universe with both deceleration and acceleration in f(R, T) gravity. Prespacetime J. 5(10), 929–942 (2015)Google Scholar
  13. 13.
    Chirde, V.R., Shekh, S.H.: Plane symmetric dark energy models in the form of wet dark fluid in f(R, T) gravity. J. Astrophys. Astron. 37, 15 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Chirde, V.R., Shekh, S.H.: Quadratic equation of state with constant deceleration parameter in f(R) gravity. J. Theor. Phys. Cryptogr. 13, 14–19 (2017)Google Scholar
  15. 15.
    Cunha, J.V.: Kinematic constraints to the transition redshift from supernovae type Ia union data. Phys. Rev. D 79, 047301 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Cunha, J.V., Lima, J.A.S.: Transition redshift: new kinematic constraints from supernovae. Mon. Not. R. Astron. Soc. 390(1), 210–217 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Guo, J.-Q., Frolov, A.V.: Cosmological dynamics in f(R) gravity. Phys. Rev. D 88, 124036 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Katore, S.D., Kapse, D.V.: Dynamics of Bianchi type-VI0 holographic dark energy models in general relativity and Lyra’s geometry. Pramana J. Phys. 88(4), 1–8 (2017)Google Scholar
  19. 19.
    Kumar, S., Singh, C.P.: Anisotropic Bianchi type-I models with constant deceleration parameter in general relativity. Astrophys. Space Sci. 312(1–2), 57–62 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Yashiki, Mai: Inflation and cosmological dynamics in f(R) gravity. Phys. Rev. D 96, 103518 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mishra, B., Biswa, S.K.: Five dimensional Bianchi type VI0 dark energy cosmological model in general relativity. Afr. Rev. Phys. 9(0012), 77–83 (2014)Google Scholar
  22. 22.
    Mishra, B., Sahoo, P.K., Ray, P.P.: Accelerating dark energy cosmological model in two fluids with hybrid scale factor. Int. J. Geom. Methods Mod. Phys. 14, 1750124–1750139 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mukherjee, A., Banerjee, N.: Acceleration of the universe in f(R) gravity models. Astrophys. Space Sci. 352(2), 893–898 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Perlmutter, S., et al.: Discovery of a supernova explosion at half the age of the universe and its cosmological implications. Nature 391, 51–54 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    Perlmutter, S., et al.: Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517(2), 565–586 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    Ratra, P.B., Peebles, P.J.E.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 3406 (1988)ADSCrossRefGoogle Scholar
  27. 27.
    Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    Tripathy, S.K., Mishra, B.: Anisotropic solutions in f(R) gravity. Eur. Phys. J. Plus 131, 273 (2016)CrossRefGoogle Scholar
  29. 29.
    Shamir, M.F., Bhatti, A.A.: Anisotropic dark energy Bianchi type III cosmological models in the Brans–Dicke theory of gravity. Can. J. Phys. 90, 193–198 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Shamir, M.F.: Some Bianchi type cosmological models in f(R) gravity. Astrophys. Space Sci. 330, 183–189 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Sharif, M., Yousaf, Z.: Instability of a dissipative restricted non-static axial collapse with shear viscosity in f(R) gravity. J. Cosmol. Astropart. Phys. 06, 19 (2014)ADSMathSciNetGoogle Scholar
  32. 32.
    Singh, C.P., et al.: Bianchi type-V perfect fluid space-time models in general relativity. Astrophys. Space Sci. 315, 181 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    Singh C.P., Kumar, P.: Holographic dark energy models with statefinder diagnostic in modified f(R,T) gravity. Gen. Relativ. Quantum Cosmol. (2015). arXiv:1507.07314 [gr-qc]
  34. 34.
    Shaikh, A.Y., Shaikh, A.S., Wankhade, K.S.: Hypersurface-homogeneous modified holographic Ricci dark energy cosmological model by hybrid expansion law in Saez–Ballester theory of gravitation. J. Astrophys. Astron. 40, 25 (2019).  https://doi.org/10.1007/s12036-019-9591-4 ADSCrossRefGoogle Scholar
  35. 35.
    Tonry, J., et al.: Cosmological results from high-z supernovae. Astrophys. J. 594, 1–24 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsS.P.M. Science and Gilani Arts and Commerce CollegeGhatanji, YavatmalIndia
  2. 2.Department of MathematicsG.S.G. MahavidyalayaUmarkhedIndia

Personalised recommendations